
Pulse Secure Virtual Traffic Manager:
TrafficScript Guide

Copyright Notice

This document is provided strictly as a guide. No guarantees can be provided or expected. This
document contains the confidential information and/or proprietary property of Ivanti, Inc. and its
affiliates (referred to collectively as “Ivanti”) and may not be disclosed or copied without prior written
consent of Ivanti.

Ivanti retains the right to make changes to this document or related product specifications and
descriptions, at any time, without notice. Ivanti makes no warranty for the use of this document and
assumes no responsibility for any errors that can appear in the document nor does it make a
commitment to update the information contained herein. For the most current product information,
please visit www.Ivanti.com.

Copyright © 2024 Ivanti, Inc. All rights reserved.

Protected by patents, see https://www.ivanti.com/patents.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 2 of 294

http://www.ivanti.com/
https://www.ivanti.com/patents
http://www.ivanti.com/company/legal

Contents

Preface 4
Document conventions 4
Requesting Technical Support 5

Introduction 7
The TrafficScript Language 7
Application of Rules 10
Using a TrafficScript Rule 11

TrafficScript Syntax 15
Statements 15
Constants 15
Variables 16
Expressions 17
Conditionals 22
Loops 25
Other Flow Control 27
Complex Data Types 27
Functions 33
Escaping Regular Expressions 33
Creating New Subroutines in TrafficScript 34
Request and Response Rules 36
The State Machine in Detail 38

Sample TrafficScript Rules 40
Routing by Content Type 40
Restricting Access Based on the Time of Day 40
Customer Prioritization 41
Routing Based on XML Traffic 42
Authenticating User Access 44
Synchronizing Requests and Responses 45
Streaming HTTP Responses 47
Managing FTP Connections 49

Troubleshooting 51
Checking Syntax 51
Debugging Rules 51
Request and Response Rules 52
A Special Note About pool.use and pool.select 53

Function Reference 55
TrafficScript Core Functions 55
Traffic Manager Functions 115

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 3 of 294

http://www.ivanti.com/company/legal

Preface

Document conventions
The document conventions describe text formatting conventions, command syntax conventions, and
important notice formats used in Ivanti technical documentation.

Text formatting conventions

Text formatting conventions such as boldface, italic, or Courier font may be used in the flow of the text
to highlight specific words or phrases.

Format Description

bold text Identifies command names

Identifies keywords and operands

Identifies the names of user-manipulated GUI elements

Identifies text to enter at the GUI

italic text Identifies emphasis

Identifies variables

Identifies document titles

Courier Font Identifies command output

Identifies command syntax examples

Command syntax conventions

Bold and italic text identify command syntax components. Delimiters and operators define groupings of
parameters and their logical relationships.

Convention Description

bold text Identifies command names, keywords, and command options.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 4 of 294

Preface

http://www.ivanti.com/company/legal

Convention Description

italic text Identifies a variable.

[] Syntax components displayed within square brackets are optional.
Default responses to system prompts are enclosed in square brackets.

{ x | y | z } A choice of required parameters is enclosed in curly brackets
separated by vertical bars. You must select one of the options.

x | y A vertical bar separates mutually exclusive elements.

< > Non-printing characters, for example, passwords, are enclosed in angle
brackets.

... Repeat the previous element, for example, member[member...].

\ Indicates a “soft” line break in command examples. If a backslash
separates two lines of a command input, enter the entire command at
the prompt without the backslash.

Notes and Warnings

Note, Attention, and Caution statements might be used in this document.

A Note provides a tip, guidance, or advice, emphasizes important information, or provides a
reference to related information.

Attention

An Attention statement indicates a stronger note, for example, to alert you when traffic might be
interrupted or the device might reboot.

Caution

A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage
to hardware, firmware, software, or data.

Requesting Technical Support
Technical product support is available through the Ivanti Support Center. If you have a support contract,
file a ticket with support.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 5 of 294

Preface

http://www.ivanti.com/company/legal

• Product warranties—For product warranty information, visit
https://forums.ivanti.com/s/contactsupport?language=en_US

Self-Help Online Tools and Resources

For quick and easy problem resolution, Ivanti provides an online self-service portal called the Support
Center that provides you with the following features:

• Find support offerings: https://forums.ivanti.com/s/contactsupport?language=en_US

• Search for known bugs: https://forums.ivanti.com/s/contactsupport?language=en_US

• Find product documentation: https://www.ivanti.com/support/product-documentation

• Download the latest versions of software and review release notes:
https://forums.ivanti.com/s/contactsupport?language=en_US

• Open a case online in the support Case Management tool:
https://forums.ivanti.com/s/contactsupport?language=en_US

• To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE)
Tool: https://forums.ivanti.com/s/contactsupport?language=en_US

For important product notices, technical articles, and to ask advice:

• Search the Knowledge Center for technical bulletins and security advisories:
https://forums.ivanti.com/s/searchallcontent?language=en_
US#t=KNOWLEDGE%20BASE&sort=relevancy

• Ask questions and find solutions at the Ivanti Community online forum:
https://forums.ivanti.com/s/?language=en_US

Opening a Case with Support

You can open a case with support on the Web or by telephone.

• Use the Case Management tool in the support at
https://forums.ivanti.com/s/contactsupport?language=en_US.

For international or direct-dial options in countries without toll-free numbers, see
https://forums.ivanti.com/s/contactsupport?language=en_US/support/support-contacts/

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 6 of 294

Preface

https://support.pulsesecure.net/product-service-policies/
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://www.pulsesecure.net/techpubs
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://kb.pulsesecure.net/
https://kb.pulsesecure.net/
https://community.pulsesecure.net/
https://support.pulsesecure.net/
https://support.pulsesecure.net/support/support-contacts/
http://www.ivanti.com/company/legal

Introduction
This chapter introduces the TrafficScript rules language, and provides a brief overview of it’s usage.

The TrafficScript Language
By using the TrafficScript language, you can write tailored traffic management rules to inspect, manage
and route requests and responses within your Traffic Manager deployment.

TrafficScript rules can manage connections in any TCP-based or UDP-based protocol. The Traffic
Manager executes designated rules whenever a new connection or network request is received,
whenever it receives a response from a back-end server node, or at the completion of a transaction.
TrafficScript rules can inspect the incoming and outgoing data in the connection, and other aspects
such as the remote client address. They can also connect to external TCP or HTTP services on demand.

The TrafficScript rules can then modify the request or response (for example, rewriting the URL or
headers in an HTTP request), set session persistence parameters, or decide how to route the request to
the most appropriate pool. This makes it possible to control precisely how traffic is managed, using
rules designed to meet to your specific hosting requirements.

This manual introduces the TrafficScript language, provides details of syntax and usage, and then
includes a full reference guide to the available function set for this version.

TrafficScript rules are stored in the Rules Catalog and applied to your Virtual Servers.

TrafficScript rules can use regular expressions. Before using regular expressions, read and
understand the security considerations in the “Administration System Security” chapter of the
Pulse Secure Virtual Traffic Manager: User’s Guide.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 7 of 294

Introduction

http://www.ivanti.com/company/legal

Use TrafficScript to perform any of these traffic management tasks:

• Inspect incoming or outgoing traffic and rewrite it fully or in part as desired.

• Restrict a Web site to a certain range of IP addresses.

• Apply selective management to elements such as Web spiders.

• Enable or disable functions for a given request or response (such as compression)

• Retry requests that generate errors a maximum number of times.

• Future-proof your services against any change in the back-end components of the system.

• Work around broken links and content on your Web site.

TrafficScript Examples

The following example TrafficScript rule can be used with HTTP requests. It handles the request as
follows:

• Requests for “www.example.co.uk” are rewritten to “www.example.com”.

• Requests for .jsp pages are routed to a set of application servers (the pool named “JSPServers”).

• Requests for URLs beginning “/secure” are only allowed during office hours.

Rewrite host header if necessary

if(http.getHeader("Host") == "www.example.co.uk") {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 8 of 294

Introduction

http://www.ivanti.com/company/legal

http.setHeader("Host", "www.example.com");

}

$path = http.getPath();

Give .jsp requests to the ‘JSPServers’ pool

if(string.endsWith($path, ".jsp")) {

pool.use("JSPServers");

}

Deny access to /secure outside office hours

if(string.startsWith($path, "/secure")) {

if(sys.time.hour() < 9 || sys.time.hour() >= 18){

connection.discard();

}

}

The next example rule can be used with HTTP responses. It processes the response as follows:

• If the HTTP status code is 404 or 5xx, retry the request a maximum of 3 times.

• If the response contains references to www.example.co.uk, rewrite it by changing these
references to www.example.com.

$code = http.getResponseCode();

if($code == 404 || $code >= 500) {

if(request.getRetries() < 3) {

Avoid the current node when we retry,

if possible

request.avoidNode(connection.getNode());

request.retry();

} else {

http.sendResponse("312 Redirect", "text/plain",

"", "Location: /");

}

}

We're only going to process text/html responses, so

break out of the rule if the response is of a

different type...

if(http.getResponseHeader(

"Content-Type") != "text/html") break;

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 9 of 294

Introduction

http://www.ivanti.com/company/legal

$response = http.getResponseBody();

if(string.contains($response,"www.example.co.uk")) {

$response = string.regexsub($response,

"www.example.co.uk", "www.example.com", "g");

http.setResponseBody($reponse);

}

Application of Rules
Rules are typically used by a virtual server to choose a pool to handle a request. The rule can inspect any
part of the request, possibly modify it, and decide which pool should handle the request.

Further uses of TrafficScript rules include:

• You can use a rule to dictate session persistence information to a pool. After inspecting the
request the rule can use the connection.setPersistenceKey() function to provide a string to
persist on. This string is used by the “Universal” session persistence method to identify the
session the request belongs to.

• Rules can be used to check the response from the server and modify it, or even retry the
request (if possible) if a transient error was detected.

• If you use various back-end systems with different presentation styles or even different
protocols, rules can be used to integrate them into a single, coherent and consistent service.
Incoming requests can be rewritten into the format suitable for the required service, and
responses can be rewritten into a single, consistent form.

• For example, HTTP requests that involve a database lookup can be rewritten into SOAP request
for a Web Service; the XML response can then be transformed into a suitable HTML document
to return using HTTP.

• Rules can override the classes assigned to a connection by the Virtual Server or the Pool. This
way, they can specify custom behaviour for each connection. For example, connections to a
slow resource can be given a longer response time tolerance. Classes you can assign in this way
include “Service Level Monitoring”, “Session Persistence” and “Bandwidth Management”.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 10 of 294

Introduction

http://www.ivanti.com/company/legal

• Service Protection classes can use rules. If you have associated a Service Protection class with
your Virtual Server, it inspects the incoming packets. The class might use a rule to check the
packet for a match with known Web worms or viruses. This rule is executed before the main
processing of the Virtual Server is carried out.

Using a TrafficScript Rule
TrafficScript rules are stored in the Rules catalog. You can use the Rules catalog to create rules, upload
them from an external source, modify or duplicate them, and delete unused rules as required.

You can configure a Virtual Server to execute one or more rules from the catalog each time it receives a
new request or response, or at completion of a transaction. This way, several different Virtual Servers
can use the same rule, and modifications to the rule take effect on all Virtual Servers.

To use TrafficScript rules, first create a new rule or upload a previously created rule using the Rules
catalog. Then configure your Virtual Server to reference and use this rule.

To Create a Rule in the Catalog

1. Click Configure > Catalogs > Rules Catalog.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 11 of 294

Introduction

http://www.ivanti.com/company/legal

2. In the “Create New Rule” section, type a name for your rule.

3. Click Use TrafficScript Language.

4. To create the rule, click Create Rule.

5. On the TrafficScript editing page, type your rule content into the Rule text box. For longer rules,
you might want to consider writing the rule in a separate text editor before pasting it in. To view
the online function reference, click TrafficScript Help. To syntax check your rule, click Check
Syntax.

6. Optionally add a free text description of the rule into the Notes text box.

7. To save your changes, click Update.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 12 of 294

Introduction

http://www.ivanti.com/company/legal

Some TrafficScript functions are protocol specific (such as 'http.getHeader()') and can only be
used when handling associated connections. Some functions are only appropriate in a request
rule or a response rule. For example, a function that modifies a parameter of a response has no
effect if used in a request rule (as the response has not yet been received). For more details,
refer to the documentation for each function in this guide, or in the Online Help.

To Upload a Rule to the Catalog

Your rules should be in plain text, and the Traffic Manager uses the full filename (including
extension) as the rule name.The Traffic Manager performs a syntax check on the uploaded rule
file. Warnings and errors are displayed on the Rule catalog page, the Diagnose page, and in the
Event Log.

1. Click Catalogs > Rules Catalog.

2. In the "Upload an existing rule" section, click Choose file to select a rule file from your local
filesystem.

3. Choose whether to overwrite existing rules that have the same name as your filename.

4. Click Upload Rule.

To Configure a Virtual Server to Use a Rule

1. Click Configure > Virtual Servers and edit your selected Virtual Server.

2. To view and modify the request, response, and transaction completion rules associated with
this Virtual Server, click Rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 13 of 294

Introduction

http://www.ivanti.com/company/legal

You can choose new rules to add to each rule type from the drop-down selection at the bottom
of each list.

3. Rules are executed in a specified order. If the first rule does not make a final decision about a
request or response, the second rule is tested, and so on. To reorder the list, use the mouse
pointer to drag the rule bars up and down as desired.

4. To enable or disable individual rules in the list, use the controls provided. To remove a rule
completely from the list, click Remove. Note that removed rules are not deleted from the
catalog, they are just disassociated with your Virtual Server.

5. For non-http protocols, you can specify whether the rule should be executed just once (against
the first request or response), or against every request and response in the protocol dialogue.

This option is not necessary for HTTP virtual servers because HTTP is a single request-response
protocol, and requests within a keepalive connection are processed independently.

You can test the effect of a new rule by enabling and disabling it for your test Virtual Server.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 14 of 294

Introduction

http://www.ivanti.com/company/legal

TrafficScript Syntax
TrafficScript is the scripting language provided by the Traffic Manager. An administrator can create
TrafficScript rules to process requests, implementing suitable logic to ensure that requests are handled
in the most appropriate way. TrafficScript is similar to many other programming or scripting languages,
such as C or Perl. This chapter describes the syntax of the language.

Statements
A command in TrafficScript is called a statement. Each statement ends with a semicolon (;), and a
TrafficScript rule typically contains several statements.

http.setHeader("Host", "secure.mysite.com");

pool.use("mypool");

Any text between a hash (#) and the end of the line is called a comment and is ignored.

Write a message to the event log file

log.info("Starting to run rule now!");

$body = http.getBody(); # get the POST data

Constants
TrafficScript allows you to specify integer, boolean, floating point, and string values:

• Integers: sequences of digits, such as “23”; hex format (0xff) and octal format (\377) are also
supported.

• Boolean: TrafficScript provides two boolean keyword constants, true and false, for use in
comparison expressions. These constants are synonymous with 1 and 0 respectively, and can be
used where an explicit truth test or return value is required.

• Floating point: decimal point (3.14) and scientific (5.6e-2) notations are both supported.

• Strings: strings are character sequences, enclosed by double (“) quotes or single (‘) quotes.

In double-quoted strings, special characters can be escaped using the standard backslash “\”
notation (for example, “\n” is a newline character), using octal notation (“\012” is also a newline)
or using hexadecimal notation (“\x0A” is a newline).

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 15 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

In single-quoted strings, no escaping is performed. For example, “\n” is not converted to the
newline character.

In both types of string, for improved readability, strings can be broken across lines using a
single “\” followed by a newline:

The following two lines both create the string ‘Hello world’

$single = 'Hello \

world';

$double = "Hello \

world";

Although, in the case of a single quoted string, not specifying the “\” at the end of the line still
causes TrafficScript to insert a newline character.

Be aware of escaping rules when writing regular expressions in TrafficScript. For example, in a double-
quoted TrafficScript string, the character “\” automatically escapes the next character, so if you want a
literal “\” in your string, double-escape it using “\\”. For this reason, regular expressions are often
written using single-quoted strings.

Variables
Variables are used in TrafficScript to store values while the rule is executed.

A simple variable can store an integer, boolean, floating point, or string value. More complex data types,
such as arrays and hashes, can also be stored in a variable. The value is interpreted as the correct type
depending on its context.

Simple data type variables are immutable when passed into a function. In other words, it is a copy of the
variable argument that is modified. Complex types, however, are treated differently. They are passed by
reference into a TrafficScript function or user-defined subroutine (for more details, see Creating New
Subroutines in TrafficScript), and as such operations on the stored value have a rule-wide effect.

Variables exist for the duration of the execution of the rule. Values stored in variables are discarded
when the rule completes.

Variable names always start with the dollar ($) character, and the value of a variable is set by the
assignment operator “=”.

$path = http.GetPath();

$bytes = connection.getDataLen();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 16 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

$pi = 3.14157;

Expressions
Expressions in TrafficScript are created from combinations of literal values, variables, evaluated
functions, and operators. Expressions are evaluated when the rule is executed.

You can use expressions to:

• Construct complex strings from several different values.

• Create complex tests for “if” conditions or “while” loops.

• Perform mathematical calculations.

You can use an expression anywhere a literal value (or variable) is suitable. You normally see
expressions:

• In assignment statements, assigning a value to a variable.

• In conditions – “if/else” statements and “while” loops.

• As function arguments.

For example:

$message = "The URL path is " . http.GetPath();

$four = 2 + 2;

Sets $ratio to "75%" (for example)

$ratio = ($a / ($a + $b) * 100) . "%";

$contentLength = http.getHeader("Content-Length");

if($contentLength > 1024 * 1024) {

log.warn("Large request body: ".$contentLength);

}

Operators

Expressions are constructed from operands (variables, literal values, and so on) and operators.
Operators perform calculations or tests on their operands.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 17 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Operands in an expression are automatically promoted to the appropriate type: string, integer, or float
in accordance with the typecasting rules described in Type Casts in TrafficScript.

The following sections provide details for the operator types you can use.

Mathematical

The operators “+”, “-”, “*” and “/” treat their operands as integers or doubles and add, subtract, multiply,
or divide them.

The prefix operator “-” promotes its operand to an integer or double and returns its negation.

4 + 7.5 * $a

-$b / $c – 1

The modulus operator “%” takes integer operands, and calculates the remainder after division.

7 % 3 # Returns 1

3 % 7 # Returns 3

String Concatenation

The operator “.” promotes its operands to strings and concatenates them.

"The message is " . $bytes . " bytes long."

($a / ($a + $b) * 100) . " percent"

The “.=” operator appends its second operand to the first:

$message = "The name is ";

$message .= "Bond, James Bond";

Comparison

The operators “==”, “!=”, “>”, “<“, “>=” and “<=” compare their operands and return true (1) or false (0).
If both arguments are strings, a string comparison is performed; otherwise the operands are promoted
to integers or floats and compared. For further information on typecasting promotion rules, see Type
Casts in TrafficScript.

1 > 3.14 # false

"99" > 100 # false (performs integer comparison)

"99" > "100" # true (performs string comparison)

$a == $b # are the values of $a and $b the same?

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 18 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Boolean

The operators “&&” and “||” perform boolean “and” and “or” tests. The prefix operator “!” performs a
Boolean “not” test.

These operators treat their operands as either true or false, and return true (1) or false (0) accordingly:

• A non-zero number operand or non-empty string operand is true.

• A zero number operand or empty string operand is false.

"foo" && !0 # true

(1 < 2) && (3 < 4) # true

$a || $b # true if $a or $b is true

Increment and Decrement

The following table shows the effect of increment and decrement operations:

Operation Description

$foo++ Increment $foo after it has been referenced

$foo-- Decrement $foo after it has been referenced

++$foo Increment $foo before it has been referenced

--$foo Decrement $foo before it has been
referenced

$foo += 5 Add 5 to the value of $foo ($foo = $foo + 5)

$foo -= 5 Subtract 5 from the value of $foo ($foo =
$foo - 5)

Bitwise Operators

The operators “&” (bitwise-AND), “|” (bitwise-OR), and “^” (bitwise-XOR) perform bitwise operations on
their integer arguments. Strings and floats are typecast to integers using TrafficScript typecasting rules
(see Type Casts in TrafficScript).

0x1234 & 255 # 0x34

1 | 2 | 4 # 7

1 ^ 3 # 2

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 19 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

The prefix operator “~” (bitwise-NOT) performs a bitwise NOT on its integer argument.

~1 & 0xffff # 65534

The bitwise left-shift and right-shift operators (“<<“ and “>>”) perform left and right bit-shifts on their
integer argument.

1 << 2 # 4

2 >> 1 # 1

Assignment Operators

In addition to +=, -=, increment, and decrement operators, TrafficScript supports the following
mathematical and bitwise assignment operators:

$foo *= 5 # Product equals ($foo = $foo * 5)

$foo /= 2 # Quotient equals ($foo = $foo / 5)

$foo %= 2 # Modulo equals ($foo = $foo % 5)

$foo <<= 2 # Bit-shift left equals ($foo = $foo << 2)

$foo >>= 2 # Bit-shift right equals ($foo = $foo >> 2)

$foo &= 2 # Bitwise AND equals ($foo = $foo & 2)

$foo |= 2 # Bitwise OR equals ($foo = $foo | 2)

$foo ^= 2 # Bitwise XOR equals ($foo = $foo ^ 2)

Precedence

Complex expressions follow the standard rules of precedence. Parentheses “(“ and “)” can be used to
group sub-expressions.

Type Casts in TrafficScript

Variables in TrafficScript can contain data of various types: integer, floating point (double), string,
boolean, array, and hash. TrafficScript automatically casts (converts) values and variables into the
correct type when you evaluate an expression or call a function. See the following table for details:

Value
Cast to
integer

Cast to
double

Cast to
string

Cast to
boolean

Cast to
array

Cast to
hash

14 (integer) 14 14.0 "14" true [14] []

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 20 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Value
Cast to
integer

Cast to
double

Cast to
string

Cast to
boolean

Cast to
array

Cast to
hash

3.25
(double)

3 3.25 "3.25" true [3.25] []

3.75
(double)

4 3.75 "3.75" true [3.75] []

"abcde"
(string)

0 0.0 "abcde" true ["abcde"] []

"3.25"
(string)

3 3.25 "3.25" true ["3.25"] []

"3.75"
(string)

4 3.75 "3.75" true ["3.75"] []

"14str"
(string)

14 14.0 "14str" true ["14str"] []

"3.2.7"
(string)

3 3.2 "3.2.7" true ["3.2.7"] []

0 (integer) 0 0.0 "0" false [0] []

"0" (string) 0 0.0 "0" false ["0"] []

"" (string) 0 0.0 "" false [""] []

[] (array) Err Err Err false [] []

["0"] (array) Err Err Err true ["0"] []

["A" => 1]
(hash)

Err Err Err true [["A" => 1
]]

["A" => 1
]

Strings and doubles are rounded up or down to the nearest integer value when they are cast to
integers.

$int = 10;

$double = 2.71828;

string.len($int); # casts to string, returns 2

string.len($double); # casts to string, returns 7

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 21 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Set $string to "10, 2.71828"

$string = $int . ", " . $double;

Convert $string to a number, and add 4:

$r = $string + 4; # $r is 14

Conditionals
TrafficScript provides two primary conditional statement types, “If” and “Switch”.

The “If” Statement

TrafficScript provides “if” and “if/else” statements for conditional execution. The condition is an
expression, which is evaluated.

The return value of the expression determines whether the condition is “true” or “false”:

• A non-zero number or non-empty string is true.

• A zero number or empty string is false.

if(<condition>) {

<statement list>

}

or

if(<condition>) {

<statement list>

} else {

<statement list>

}

TrafficScript evaluates the given condition. If it is true (the value is non-zero, or is a non-empty string),
TrafficScript executes the statement list that follows. In the case of an “If/Else” statement, and the
condition evaluates to false, TrafficScript instead executes the second statement list following “else”.

For example:

$path = http.getPath();

if(string.startsWith($path, "/secure")) {

pool.use("secure pool");

} else {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 22 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

pool.use("non-secure pool");

}

The "switch" Statement

TrafficScript provides a "switch" statement for cases where one if-else expression can evaluate to a
number of different values, each requiring the Traffic Manager to take a different action. For example, a
Traffic Manager might serve several different domains, each with its own back-end. By checking the
host value of the HTTP header, you can use the switch statement to select the correct back-end using a
number of cases.

The syntax for the switch statement is:

switch(<expression>[, <function name>]) {

case <expression list 1>:

<statement list 1>;

case <expression list 2>:

<statement list 2>;

case <expression list 3>:

<statement list 3>;

...

[default:

<statement list>;]

}

By default, the Traffic Manager executes the first case containing an expression that evaluates to be
equal ("==") to the switch <expression>.

You can specify an alternative comparison function using the optional <function name> argument. This
argument accepts the name of a user defined or built in function, declared without any brackets or
arguments. It must accept two arguments, with the switch expression being the first argument and the
current case expression being the second. If this function returns a value that evaluates to true, the
Traffic Manager executes the corresponding case statement list. For example, to perform matches on
regular expressions, set <function name> to the TrafficScript function "string.regexmatch".

For each case statement, you can specify either a single expression or a comma-separated list of
multiple expressions to be used in the comparison. A case is executed if the evaluation function returns
true for any of the case's expressions. In this context, the commas in the expression list act as the "or"
logical operator.

The optional default statement must only be used as the last case and is always executed if reached.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 23 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

A typical usage example:

$host = http.getHostHeader();

switch($host) {

case "secure.example.com", "ssl.example.com":

pool.use("secure pool");

case "www.example.com", "www.example.org", "www.example.net":

pool.use("non-secure pool");

default:

pool.use("discard");

}

An example using a custom evaluation function:

$host = http.getHostHeader();

switch($host, string.startsWith) {

case "secure", "ssl":

pool.use("secure pool");

case "www":

pool.use("non-secure pool);

default:

pool.use("discard");

}

A switch statement is additionally affected by the following:

• You can use the break statement to break out of a switch statement entirely and continue
execution after the switch. This has no effect on surrounding loops.

• TrafficScript does not provide an implicit fall-through. In other words, a break at the end of a
case body is redundant.

• You can use any variable type within a switch.

• A switch has no return value.

• The Traffic Manager evaluates <expression> only once and stores the result for case
comparison. If <expression> is a function, it is therefore executed only once.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 24 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Loops
A body of code can be executed a number of times using a loop. TrafficScript supports “for”, “while”,
“do”, and “foreach” loops.

“for” Loops

A “for” loop contains an initialization step, a test and an increment step, bracketing the body of code to
be executed on each iteration:

for(<initialization> ; <condition> ; <increment>) {

<statement list>

}

For example:

for($count = 0; $count < 10; $count++) {

log.info("In loop, count = " . $count);

}

This loop will print the message 10 times, with $count running from 0 to 9.

‘while’ Loops

The “while” loop evaluates a condition, and while the condition is true, it executes the enclosed block of
code:

while(<condition>) {

<statement list>

}

For example:

$count = 0;

while($count < 10) {

log.info("In loop, count = " . $count);

$count = $count + 1;

}

This loop will print the message 10 times, with $count running from 0 to 9.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 25 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

“do” Loops

The “do” loop executes the enclosed block of code, then checks the condition. It repeats the code while
the condition evaluates to true:

do {

<statement list>

} while(<condition>);

For example:

$count = 0;

do {

log.info("In loop, count = " . $count);

$count = $count + 1;

} while($count < 10);

This loop will print the message 10 times, with $count running from 0 to 9.

TrafficScript contains a number of helper functions to manipulate complex data, such as HTTP requests
or long strings. Consequently, it is rarely necessary to use loops in TrafficScript.

“foreach” Loops

Typically used with arrays and hashes, a “foreach” loop executes the bracketed body of code with each
element of the supplied array in turn. The variable to the left of the “in” operator is initialized with the
next array element prior to executing the code block.

foreach (<element> in <array>) {

<statement list>

}

For example:

$array = ["Alex", "Matt", "Oliver", "Laurence"];

$i = 0;

foreach ($element in $array) {

log.info("Element #" . $i . " " . $element);

$i++;

}

For an example of a foreach loop with a hash, see Hashes.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 26 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Other Flow Control
The “break” and “continue” statements can be used to restart or exit loop or rules processing.

Inside a while loop, “break” causes execution of the loop to stop. Execution then continues to the
statement after the loop. “continue” causes the loop code to restart.

Inside a rule (outside any containing loops), “break” causes execution of the rule to stop. Execution then
proceeds to the next TrafficScript rule. “continue” causes the rule to be restarted from the beginning.

For example:

We're only interested in processing HTTP text/html

responses...

$mime = http.getResponseHeader("Content-Type");

if(!string.startsWith($mime, "text/html")) break;

proceed with processing for text/html...

Complex Data Types

Arrays

An array in TrafficScript is a structured variable that stores a list of values. For example, you can define a
list of names using the following code:

$array = [“Alex”, “Matt”, “Oliver”, “Laurence”];

The values in this array can then be looked up:

$someone = $array[0];

log.info($someone);

This instructs the Traffic Manager to print the string “Alex” to the event log. TrafficScript has functions
that make it easy to work with array structures. For example, to print all of the names stored in $array
using a “for” loop, first determine the number of elements that $array stores. TrafficScript provides the
function array.length() for this purpose. For example:

$array = ["Alex", "Matt", "Oliver", "Laurence"];

$arraylen = array.length($array);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 27 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

log.info("My array has " . $arraylen . " elements.\n");

for ($i = 0; $i < $arraylen; $i++){

log.info ("Element #" . $i . " " . $array[$i]);

}

When applied as a rule, this code causes the following output in the event log.

Alternatively, you can bypass the requirement to know the array length by using a “foreach” loop. The
code below produces output similar to the previous example:

$array = ["Alex", "Matt", "Oliver", "Laurence"];

$i = 0;

log.info ("My array has " . array.length($array) . " elements.\n");

foreach ($element in $array) {

log.info("Element #" . $i . " " . $element);

$i++;

}

For further information on array-specific functions, refer to the TrafficScript Reference in the Traffic
Manager Online Help.

Hashes

A hash in TrafficScript is similar to an array, but instead of storing a list of values it stores a list of
key/value pairs. Hashes are sometimes referred to as associative arrays. You can define a hash using the
following code:

$hash = ["orange" => "fruit",

"apple" => "fruit",

"cabbage" => "vegetable",

"pear" => "fruit"];

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 28 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

To print all of the keys and values stored in the hash, first get a list of keys in the form of an array - using
the function hash.keys() - that you can then use in a foreach loop to print all of the values. For example:

foreach ($key in hash.keys($hash)){

log.info("Key: " . $key . "; Value: " . $hash[$key] . ";");

}

Combining the above two samples of code results in the following output in the event log:

The Global Associative Array

This is the first of three persistent associative arrays that TrafficScript can access.

Access the global array using the data.set() and data.get() functions. Data set in this array is persistent,
and can be read from a later script. This array is of fixed size (the size is defined by the Traffic Manager
global setting trafficscript!data_size). When it fills up, you cannot add further entries without first
removing existing entries.

Maintaining the Array

As mentioned, use data.set() and data.get() to add and lookup array items. To delete individual
elements, use data.remove().

To determine the amount of memory in use by the global array, use the function data.getMemoryUsage
(). To delete all entries in the array, use data.reset(). You can delete a subset of the entries using
data.reset("prefix").

If you want to store several different types of data globally, use a consistent prefix to start the name of
each key. Then, if you need to free memory, you can identify and delete all of the data that is stored for
one particular purpose (for example, a global cache that grows continually, but can safely be deleted
and reconstructed if necessary).

Example: An Indexed Array

You can use the global associative array to create an indexed array named “myarray” as follows:

Declare a subroutine to calculate factorials

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 29 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

sub factorial($n) {

if($n == 0) return 1;

return $n*factorial($n-1);

}

Put entries into the array

$c = 0;

while($c <= 10) {

$msg = "Did you know that ". $c ."! is ". factorial($c) ."?" ;

data.set("myarray".$c, $msg);

$c++;

}

Look up several entries. Note: the 1000th entry is empty

$msg = "";

$msg .= "Index 5: ".data.get("myarray5")."\n";

$msg .= "Index 10: ".data.get("myarray10")."\n";

$msg .= "Index 1000: ".data.get("myarray1000")."\n";

delete the entire array (but no other data stored by data.set)

data.reset("myarray");

http.sendResponse("200 OK", "text/plain", $msg, "");

The Process-Local Associative Array

This is the second of three persistent associative arrays that TrafficScript can access.

When data has to be persistent to the whole system, but not globally unique, the process-local
associative array provides the best balance between flexibility and performance. Entries in the global
array (using the TrafficScript commands data.set() and data.get()), are unique across the whole system.
This means that on a Symmetric Multiprocessing (SMP) system, when a process inserts a new array
entry, it has to prevent all the other processes from accessing that same entry at the same time. The
Traffic Manager achieves this with locks that hold the other processes back until the first process has
finished. As such, if entry insertions and updates are happening very frequently, the system can spend a
lot of time waiting to access the global array.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 30 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

To alleviate this, the Traffic Manager provides the process-local array; accessed using data.local.*.
Entries in the process-local array can be read from any TrafficScript context that takes place in the same
process as the one that added them, across requests and connections. Essentially, the process-local
array trades memory for performance: access and manipulation is instant, no locks are involved, but
data is present once per process instead of just once across the system. In most cases this trade-off is
acceptable, and in some cases, especially where the application logic requires the use of the data.reset()
function, the performance benefits of using the process-local array are substantial.

The Connection-Local Array

This is the third of three persistent associative arrays that TrafficScript can access.

When processing a connection, it is sometimes useful to store information calculated in one rule for
retrieval in a later rule. You can do this using a connection-local associative array, using the
connection.data.set() and connection.data.get() functions.

Information stored in this way can only be retrieved by a TrafficScript rule that is processing the same
connection, and all information is destroyed (and the memory freed) when the connection completes.

Libraries

TrafficScript rules that contain subroutines can be used as libraries. Take the following rule for example:

sub headbug(){

Prints each header to the event log.

$headers = http.listHeaderNames();

foreach ($header in $headers){

log.info($header . ": " . http.getheader($header));

}

}

The http.listHeaderNames() function returns an array of header names that were sent in the HTTP
request.

To make this routine available as a library, save it as a separate rule and use the import statement to use
it in your other rules. For example, by saving the above routine as a rule named “foo”, you can then
import and use the headbug() subroutine using the following code:

import foo;

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 31 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

foo.headbug();

You can alternatively employ a locally declared alias for the imported library, such as:

import foo as mylib;

mylib.headbug();

This provides a means to reference an imported library with a more suitable, or perhaps shorter, local
name. Functionally, there is no difference between this mechanism and the directly named example.

Applying this rule to a Virtual Server causes the names and values for each header of each request that
the Virtual Server processes to be logged to the event log. You can modify the first rule (or library) so
that it creates a hash of each of the headers using the following example:

sub headbug(){

Prints each header to the event log.

$headers = http.listHeaderNames();

foreach ($header in $headers){

$headhash = [$header => http.getheader($header)];

log.info($header . ": " . $headhash[$header]);

}

}

Although this library performs the same function, it does so slightly differently in that it creates a data
structure that can be used later. To be able to use this structure later, however, you must extract it from
the subroutine. To achieve this, alter the headbug() subroutine to return the $headhash data structure,
then modify the calling code:

foo (library rule)

sub headbug(){

Prints each header to the event log.

$headers = http.listHeaderNames();

$headhash = [];

foreach ($header in $headers){

$headhash[$header] = http.getheader($header);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 32 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

#log.info($header . ": " . $headhash[$header]);

}

return($headhash);

}

bar (calling rule)

import foo;

$headhash = foo.headbug();

foreach ($header in hash.keys($headhash)){

log.info($header . ": " . $headhash[$header]);

}

Functions
A function performs an action, and returns a value. Functions are used to provide useful capabilities to
TrafficScript.

TrafficScript contains a large number of functions to manipulate data or manage the current request.
For ease of use, TrafficScript functions are grouped into families. For example, functions that operate on
HTTP requests all begin with “http.”, such as http.getHeader() or http.setBody().

To call a function, use its name followed by a pair of parentheses “()”. Many functions take one or more
values as parameters, and these are listed inside the parentheses.

connection.discard();

http.setHeader("Cookie: type=chocolate");

$hello = string.append("Hello", " ", "world", "!");

Function names are not case sensitive. So, the function lang.todouble() can be invoked using
lang.toDouble(), Lang.ToDouble() or lang.todouble().

For a description of all TrafficScript functions applicable to this product version, see Function Reference

Escaping Regular Expressions
Several TrafficScript functions take regular expressions as arguments. TrafficScript uses the PCRE regular
expression library.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 33 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Regular expressions might contain a number of special characters:

• . matches any single character.

• ? indicates that the previous expression is optional.

• * matches any number of the previous expression.

• ^ matches the beginning of a string.

• $ matches the end of a string.

If you want to match a literal period (.), or other special character in your regular expression, escape it
with a backslash (\) character.

Like many other scripting languages, double-quoted TrafficScript strings use “\” as an escape character,
so to place a regular expression like “^192\.168\.” into a TrafficScript double-quoted string, you must
double-escape the “\” character:

Sets the regex string as ^192\.168\.

The two examples below have the same effect

$regex = "^192\\.168\\.";

$regex = '^192\.168\.';

if (string.regexMatch($ip, $regex)) {

 # IP is on 192.168.* network

}

Note that it’s not often necessary to use regular expressions in TrafficScript for the following reasons:

• To search strings, you can use string.IPMaskMatch(), string.Contains(), string.startsWith() and
string.endsWith().

• To search and replace within strings, you can use string.replace() and string.replaceAll().

Creating New Subroutines in TrafficScript
You can create new TrafficScript subroutines to improve the efficiency of your software. Once created,
these routines can be used in rules or procedures just like the predefined functions.

Syntax

The syntax to create a new subroutine is:

sub function_name ($var1, $var2)

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 34 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

{

 <code>

 return "return value"

}

Subroutines can be called just as you would call any normal function:

$ret = function_name($foo, $var);

This example would return the value given by the subroutine into the variable $ret.

Subroutine Position and Name Restrictions

User subroutine names cannot be the same as built-in TrafficScript functions.

Subroutines can be declared above or below where they are used. For example, the following code is
correct:

test();

sub test()

{

 log.info("Attention! Test running");

}

Local Variables

Variables within subroutines are local to that section and do not affect the result when used outside of
the subroutine.

For example, the following lines of code print out an empty string, as $var is not available (passed in as
an argument) within the subroutine:

$var = "abc";

sub function()

{

 log.info($var);

}

function();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 35 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

$1 to $9 Variables

TrafficScript uses $1 to $9 as global variables, so they can be used to return extra data from subroutines
in addition to the (optional) return statement that returns a single value.

For example, the following code prints "Hello World":

sub greetings()

{

 $1="Hello ";

return "World"

}

$ret = greetings();log.info($1 . $ret)

Request and Response Rules
TrafficScript rules are assigned to a Virtual Server. The Traffic Manager allows a rule to be used as a
“request rule”, a “response rule”, or a “transaction completion rule”:

• Request rules are executed when the first request data is received from a client. A request rule
can read further data if the client's request is not complete. When the request rules assigned to
a virtual Server have finished executing, a connection to a back-end server is made and the
request data is streamed to the server.

• Response rules are executed when the first data in the response is read from the back-end
server. A response rule can then read further data from the server, and can flush the current
data to the client. When the response rules assigned to a Virtual Server have finished executing,
the remaining data is streamed to the client.

• Transaction completion rules are applied at the end of the transaction when, for example, the
client or server closes the connection, or when the connection times out. In the case of HTTP,
RTSP and SIP Virtual Servers, transactions are also considered complete when a full response
has been sent to the client, even if the connection is kept alive to handle another request.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 36 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Processing Multiple Requests and Responses

If the client sends another request down the same network connection, the Traffic Manager can be
configured to run the request and response rules again against this new request. To configure this
behavior, use the “run once/run every time” setting for each rule in the Virtual Server configuration. Use
request.endsAt() and request.endsWith() to parse persistent connections that contain multiple requests
and responses.

The run once/run every time option is not relevant for HTTP connections. Even though a client
might send several HTTP requests down the same persistent connection, they are automatically
separated into single connections internally.

If you are parsing persistent connections on which the client and server can send data at any
point in time in any order, use the “Generic Streaming” Virtual Server type along with
request.get() and response.get().

Specialized Protocol Handling Functions

Processing HTTP

The Traffic Manager is fully conversant in the HTTP protocol. On a new HTTP connection, request rules
are not started until all the HTTP headers have been received. Specialized TrafficScript functions (such
as http.getPath() and http.setHeader()) are available to parse and manipulate the request.

When an HTTP response is received from a back-end server, it does not execute the response rules until
it has received all the HTTP headers in the response. Again, specialized TrafficScript functions (such as
http.setResponseHeader() and http.setResponseCookie()) are available to manipulate the response.

You cannot use the lower-level connection, request, and response functions such as
request.getLine() or response.set() to modify an HTTP request. Use the equivalent specialized
HTTP functions instead.

Although multiple HTTP requests can be submitted down a single TCP connection (using keepalives and
pipelining), the Traffic Manager transparently separates these requests and handles each individually.
For this reason, the option to run rules once or every time is not relevant to HTTP requests.

HTTPS traffic decrypted by the Traffic Manager is handled in exactly the same way. The HTTP payload
requests can be inspected and manipulated just as if they were sent in plain text.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 37 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Other Specialized Protocols

TrafficScript offers high-level functions for several other protocols, including SIP and RTSP. Always use
the high-level functions to read and write request data where possible, rather than lower level functions
such as request.get() or response.set().

Processing Other Protocols

The Traffic Manager can handle other protocols (TCP and UDP based) using request.get(), request.set(),
response.get(), response.set(), and related functions to read requests.

UDP is a connectionless protocol. To set a UDP response, use the TrafficScript function
connection.close($data, 0);.

The State Machine in Detail

Controlling the State Machine

The following TrafficScript functions can be used to control the state machine when processing requests
and responses:

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 38 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Function Notes

pool.use() When used in a request rule, aborts all rules processing and
specify the pool to give the request to.

request.sendResponse()

http.sendResponse()
When used in a request rule, specifies the response to send to the
client. The current request is discarded and no data is sent to any
back-end servers.
When the request rules finish, the response rules are run on the
provided response.

response.close() In a response rule, close the connection to the server.
When the response rules complete, pending response data is sent
to the client and the Traffic Manager then waits for a new request
from the client.

request.endsAt()

request.endsWith()
In a request rule, use these functions to extract individual requests
from the incoming data stream and process them synchronously
in a request-response manner.
For some protocols, a client might send several requests in one
go. These functions can be used to process the requests one-by-
one.

request.retry() In a response rule, retry the request if possible.
All request data that was read before and during a request rule is
cached. A request can be retried if all the request data was read
and cached; it can't be retried if data was subsequently streamed
between the client and the server before a response was received.

response.flush() In a response rule, flush the current response data. Use
response.get() or response.getLine() to read further response data.
This function can be used to manually stream data from the server
to the client, ensuring that the response rule does not complete
until the response has completed.

connection.close()

connection.discard()
These functions can be used to abort a connection, optionally
providing a response. The abort is immediate - no further rules are
run at either the request or response stage.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 39 of 294

TrafficScript Syntax

http://www.ivanti.com/company/legal

Sample TrafficScript Rules

Routing by Content Type
This example inspects the URL in an HTTP request. It decides which pool to send the request to, based
on the value of the URL.

Suppose your Web site uses a number of different technologies, including Microsoft ASP pages and
Oracle JSP as well as static HTML content. Microsoft Windows based devices serve the ASP pages,
Oracle servers handle JSP, and a set of commodity Linux servers serve the static content. You want to
direct your traffic to different servers depending on the specific content.

Set up a pool for each of these groups called “windows”, “oracle” and “linux” respectively. The following
rule directs network traffic according to the type of content.

$path = http.getPath();

if(string.endsWith($path, ".jsp")) {

 pool.use("oracle");

} else if(string.endsWith($path, ".asp")) {

 pool.use("windows");

} else {

 pool.use("linux");

}

Restricting Access Based on the Time of Day
This example only allows access to a particular service during designated office hours (between 9am
and 6pm, Monday to Friday). It discards all connections that occur outside these times.

$dayofweek = sys.time.weekDay();

$hourofday = sys.time.hour();

$dayofweek: Sunday is 1, Saturday is 7

$hourofday: office hours are between 9am and 5:59pm

if($dayofweek == 1 ||

$dayofweek == 7 ||

$hourofday < 9 ||

$hourofday >= 18) {

log.warn("Warning: access out of hours!");

connection.discard();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 40 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

}

In practice, it may be more appropriate to direct restricted traffic to a separate error pool of servers
rather than just dropping the connection without warning. The servers in the error pool can be
configured to return an appropriate error message before closing the connection. The procedure for
doing this depends on the protocol being balanced.

Customer Prioritization
This example inspects the cookie in an HTTP request. It uses the value of the cookie to determine which
pool to direct the request to. One pool is faster than the other because it contains machines that are
reserved for premium users.

A company has a customer base divided into gold and silver membership. It wishes to give priority to
the gold customers and has five servers: yellow, green, blue, black, and purple.

Two pools are created: standard, for silver customers, containing machines yellow, green and blue; and
premium, for gold customers, which includes all five of the servers. Thus black and purple are only
available to gold customers.

The site uses a cookie login system, with the customer type encoded in the cookie. Different
membership levels can be detected, and sent to the correct pool:

$cookie = http.getHeader("cookie");

if(string.contains($cookie, "gold")) {

 pool.use("premium");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 41 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

} else {

 pool.use("standard");

}

Routing Based on XML Traffic
TrafficScript includes support for parsing XML documents using XPath, an industry-standard language
used to query XML documents.

XML documents are used by SOAP-based protocols such as Web Services, and enable complex data to
be exchanged and understood automatically without user intervention.

An XML document is organized into a tree structure of nodes1. Each node might contain a piece of data,
or other nodes. XPath can navigate through these nodes to extract specific data from the XML
document. This data can then be used to make routing decisions on the traffic.

The XPath 1.0 specification is available at http://www.w3.org/TR/xpath.

Example: Google Search Request

The Google™ search engine has a Web Services interface that accepts SOAP requests for search queries.
A request for a search for Ivanti consists of an HTTP POST containing the following XML body data:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<namesp1:doGoogleSearch xmlns:namesp1="urn:GoogleSearch">

<key xsi:type="xsd:string">googleUniqueID</key>

<q xsi:type="xsd:string">Ivanti</q>

<start xsi:type="xsd:int">0</start>

<maxResults xsi:type="xsd:int">10</maxResults>

<filter xsi:type="xsd:boolean">false</filter>

<restrict xsi:type="xsd:string"/>

<safeSearch xsi:type="xsd:boolean">false</safeSearch>

1Note that these are unrelated to Traffic Manager back-end nodes.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 42 of 294

Sample TrafficScript Rules

http://www.w3.org/TR/xpath
http://www.ivanti.com/company/legal

<lr xsi:type="xsd:string"/>

<ie xsi:type="xsd:string">latin1</ie>

<oe xsi:type="xsd:string">latin1</oe>

</namesp1:doGoogleSearch>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note that the SOAP body contains a “doGoogleSearch” node. This contains the parameters of the
search request.

An Internet service might implement or proxy doGoogleSearch requests and the Traffic Manager might
be used to manage the traffic to this service.

For example, it might be necessary to split doGoogleSearch requests according to the specified
maximum number of results. If “maxResults” is greater than 100, the request is to be sent to pool
“googleLarge”, otherwise it should be sent to pool “google”.

A TrafficScript rule can use the functions xml.XPath.MatchNodeSet() and xml.XPath.MatchNodeCount()
to query the SOAP request body and test XML nodes:

Read the entire body of the SOAP/HTTP request

$body = http.getBody(0);

XML parameters lie in the "urn:GoogleSearch" XML

namespace:

$googlens = "xmlns:googlens=\"urn:GoogleSearch\"";

Test for the presence of a "doGoogleSearch" node.

If present, get the value of the "maxResults"

parameter and choose the pool

if(xml.XPath.MatchNodeCount($body, $googlens,

"//googlens:doGoogleSearch")) {

$maxResults = xml.XPath.MatchNodeSet($body, $googlens,

"//googlens:doGoogleSearch/maxResults/text()");

if($maxResults >= 100) {

pool.use("googleLarge");

} else {

pool.use("google");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 43 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

}

Authenticating User Access
The following rule uses HTTP Basic authentication to ask the remote client for a user name and
password. It checks the client’s user name, password, and IP address using a local Web server running
an authentication application.

The rule looks for a header called “Authorization”. This should contain a string containing the word
Basic, followed by a base-64 encoded string. When decoded, this string is of the form
username:password.

If the string is malformed or the user name or password is absent, the rule returns a “401 Authorization
Required” message to the client. This causes the user’s Web browser to prompt them for a user name
and password.

If a user name and password have been supplied, the rule uses these details, together with the DNS
name of the client, to query the local Web server using http.request.get(). The rule expects a “200 OK”
response from the Web server to indicate success. Any response code other than 200 results in the rule
sending the user the response “403 Forbidden”.

Note that if the user is successfully authenticated, the rule performs no positive action with the request.
It is passed on to any other rules the Virtual Server is using, or its default pool.

Determine the username and password, and send a

'401 Authorization Required' header if there isn't

one.

$authheader = http.getHeader("Authorization");

Decode the Authorization header; it starts with

'Basic', followed by a base64 encoded

username:password string

if(string.startsWith($authheader, "Basic ")) {

$encuserpasswd = string.skip($authheader, 6);

$userpasswd = string.base64decode($encuserpasswd);

$i = string.find($userpasswd, ":");

$user = string.substring($userpasswd, 0, $i-1);

$password = string.skip($userpasswd, $i+1);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 44 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

If the client did not provide an Authorization

header, indicate that authorization is required

if($user == "") {

http.sendResponse("401 Authorization required",

"text/html", "Please login\n",

"WWW-Authenticate: Basic realm=\"secure

server\"");

}

Check the supplied username and password by

querying a local access server with the username,

password and remote host.

$rhost = net.dns.resolveIP(connection.getRemoteIP());

$querystring = "user=" . string.escape($user) .

"&passwd=" . string.escape($password) .

"&rhost=" . string.escape($rhost);

http.request.get(

"http://server/auth.cgi?" . $querystring);

if($1 != 200) {

access was denied

http.sendResponse("403 Forbidden",

"text/html", "Access denied\n", "");

}

The user is allowed access

This rule could be optimized to cache responses from the local Web server, using data.set() and
data.get().

Synchronizing Requests and Responses
This example assumes that we are managing a simple line-based protocol. Each request is one line long,
delimited by a new-line character (\n). Each response might be very long, but is finished by a single line
containing a dot (".\n").

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 45 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

This protocol is similar to many simple line-based protocols like POP, IMAP or SMTP, although they
each have more sophisticated ways if indicating when a response has finished. The protocol is
persistent - there might be many requests and responses within a single connection.

You can use a simple client-first or server-first Virtual Server to manage this protocol.

You might want to intercept a particular request and return a response directly from the Traffic
Manager without forwarding the request to the back-end server, but it might be desirable to keep the
connection open and forward other requests to the server. This example permits all requests other than
"HACKME\n", for which "403 Go Away!\n.\n" is returned

A first attempt might be as follows:

get the request

$req = request.getLine();

if($req == "HACKME\n") {

request.sendResponse("403 Go away!\n.\n");

}

This simple filter has great potential for being subverted. A determined hacker could:

• Try sending the requests byte-by-byte to fool any parsing code (this would not work in this
case).

• Try sending two requests in one packet - the first is valid, the second is “HACKME”. The above
filtering code lets the entire packet through.

• Send one request and a partial "HACK" in one packet, then send "ME\n" in a second packet
when the attacker receives the response from the first request. Our sample filter does not
recognize the fragmented "HACKME" request.

To avoid these potential errors, it is necessary to synchronize individual requests, processing each
request in turn and buffering up any additional data for the next request:

get the request

$req = request.endsWith("\n");

if($req == "HACKME\n") {

request.sendResponse("403 Go away!\n.\n");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 46 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

Using request.endsWith() causes data to be read up to, and including, the “\n”. This data alone is then
processed, going through the request and response stage of the state machine. When a response has
been received from the server, the next request starts processing, which might contain data that was
postponed from the previous request.

This simply and effectively guards against attempts to subvert the parser by sending two requests in
one, or by sending partial requests.

This solution has an unfortunate side effect. If a user sends two requests in quick succession, and the
first request causes the server to send a large response, with the second request being the “HACKME”
message that causes the Traffic Manager to send a response itself.

If the “HACKME“ request is received while the server is still responding to the previous request, the
Traffic Manager’s direct response might be interleaved with the server's response, resulting in a corrupt
data stream back to the client.

The solution is to synchronize responses in the data stream, so that processing of the next request is
delayed until the previous request has completed. This can be achieved with a simple response rule:

$res = response.getLine();

while($res != ".\n") {

response.flush(string.len($res));

$res = response.getLine();

}

The response rule does not complete until a line containing ".\n" is received. When it completes, all
remaining response data is flushed to the client and the next request is processed.

Streaming HTTP Responses
The low-level function response.flush() should not be used to manage HTTP responses. Ivanti
recommends using the http.stream.* functions instead.

If you wish to generate or modify an HTTP response, the simplest way to do so is to read the response
in its entirety (using http.getResponseBody()), manipulate it, and then write it using
http.setResponseBody(). However, this can be inefficient when managing large HTTP responses for the
following reasons:

• Data is not written to the client until the response rule completes. If it takes time to read the
entire response and manipulate it, this can potentially cause the client to timeout and close the
connection.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 47 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

• The entire response needs to be managed in memory, which can be very memory-inefficient.
The memory is not discarded until the rule has completed and the data is written to the client.

As an alternative, you can stream HTTP responses, reading and writing them in smaller quantities.
Response data is written as soon as it is available, ensuring lower memory use and better performance.

The following functions manage HTTP streaming:

Function Notes

http.stream.startResponse() This function should be called before any data is
written to the client. The headers for the response as
assembled and written to the client. No response
header manipulation can be performed after this point.

http.stream.readResponse() Reads and returns a portion of the HTTP response
body, limited by length or a delimiter character.

http.stream.writeResponse() Writes the supplied body data to the client, but holds
the connection open for additional body data if
required.

http.stream.finishResponse() Indicates that response streaming has finished. Rules
processing is halted and any remaining response data
is sent to the client.

The following TrafficScript rule processes HTML responses line by line, making a simple substitution:

$status = http.getResponseCode();

if($status != 200) break;

$type = http.getResponseHeader("Content-Type");

if(!string.startsWith($type, "text/")) break;

http.stream.startResponse($rcode, $type);

while($line = http.stream.readResponse(2048, "\n")) {

$line = string.replaceAll($line, "TrafficScript", "TRAFFICSCRIPT"

);

http.stream.writeResponse($line);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 48 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

http.stream.finishResponse();

The http.stream.* series of TrafficScript functions cannot be used in conjunction with the Traffic
Manager’s Web content optimization technology - Aptimizer. Executing any of these functions
bypasses Aptimizer completely and return the response directly to the client.

Managing FTP Connections
This sample TrafficScript rule manages incoming FTP connections. It implements a proxy for the login
stage, waiting until the remote user has provided a suitable user name and password.

When using this rule, configure it as a “run every time” request rule:

$req = string.trim(request.endswith("\n"));

if(string.regexmatch($req, "USER (.*)")) {

connection.data.set("user", $1);

$msg = "331 Password required for ".$1."!!\r\n";

request.sendresponse($msg);

break;

}

if(!string.regexmatch($req, "PASS (.*)")) {

Are we connected?

if(connection.getNode()) { break; }

request.sendresponse("530 Please log in!!\r\n");

break;

}

$user = connection.data.get("user");

$pass = $1;

In this case, we'll permit any password that is

the uppercase version of the username

Do your own authentication here; for example,

call a remote server with http.request.get

if(string.uppercase($user) != $pass) {

request.sendresponse(

"530 Incorrect user or password!!\r\n");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 49 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

break;

}

now, replay the correct request against a new

server instance, disconnecting from any FTP server

we are already connected to

response.close();

connection.data.set("state", "connecting");

request.set(

"USER anonymous\r\nPASS ".$user."\r\n");

select the pool we want...

if($user == "ftp@example.com") {

pool.select("Traffic Manager FTP pool");

}

if($user == "ftp@customer.com") {

pool.select("Customer FTP pool");

}

the default pool is 'discard', so other users

are dropped

To use this rule, configure it as a “run every time” response rule:

if(connection.data.get("state") == "connecting") {

We've just connected. Slurp the first line

(the serverfirst banner), the second line (the

331 need password) and then replace the

serverfirst banner

$first = response.getLine();

$second = response.getLine("\n", $1);

$remainder = string.skip(response.get(), $1);

response.set($first.$remainder);

connection.data.set("state", "");

}

Remember to configure a server-first banner for the FTP Virtual Server.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 50 of 294

Sample TrafficScript Rules

http://www.ivanti.com/company/legal

Troubleshooting
Writing and debugging complex TrafficScript rules is an involved process. This chapter lists some useful
techniques.

Checking Syntax
A syntax error occurs if you make an error in your TrafficScript rule that prevents the Traffic Manager
from fully understanding the rule.

When editing a rule in the Admin UI, you can check the syntax at any time using the Check Syntax
button on the Catalogs > Rules > Edit page.

You can also check the syntax of a TrafficScript rule from the command line using the zeus.zxtm binary
as follows:

$ export ZEUSHOME=/usr/local/zeus

$ $ZEUSHOME/zxtm/bin/zeus.zxtm --rulesyntaxcheck rulefile

Compilation failed, with 1 error

Error: line 20: Wrong number of arguments to function pool.use

pool.use();

^

TrafficScript is not case-sensitive. Function names and variables can be referred to using any
combination of case.

Debugging Rules
The TrafficScript function log.info() can be used to log a message to the error log
(ZEUSHOME/log/errors).

Consider the following code:

if(string.contains(http.getPath(), "root.exe")) {

log.info("Discarding potential nimda attack");

connection.discard();

}

This appends the following message to your error log file:

$ export ZEUSHOME=/usr/local/zeus

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 51 of 294

Troubleshooting

http://www.ivanti.com/company/legal

$ tail $ZEUSHOME/log/errors

[20/Dec/2014:10:24:46 +0000] INFO rules/RuleName rulelogmsginfo

vservers/VSname Discarding potential nimda attack

You can also inspect your error log file by clicking Event Log in the Traffic Manager Admin UI.

When you are debugging a rule, use log.info() to print out progress messages as the rule executes.
log.info() requires a string parameter; you can construct complex strings by appending variables and
literals together using the “.” operator:

$msg = "Received ".connection.getDataLen()." bytes.";

log.info($msg);

The functions log.warn() and log.error() are similar to log.info(). They prefix error log messages with a
higher priority - either “WARN” or “ERROR”. Use the Event Log viewer to filter out low-priority
messages.

Be careful when printing out connection data verbatim as the connection data might contain control
characters or other non-printable characters. You can encode data using either “string.hexEncode()” or
“string.escape()”.

You should use “string.hexEncode()” if the data is binary, and “string.escape()” if the data contains
readable text with a small amount of non-printable characters.

Request and Response Rules
In some circumstances, a poorly written request or response rule can stall a connection. If you call a
function such as request.getLine(), the connection can block until it receives another line of input. If
you've mis-parsed the connection and the client or server are not going to send any more input, the
connection can stall indefinitely (until it is timed out).

Take great care to correctly parse a protocol if you write a detailed handler for it. Your implementation
of the handler determines precisely how the protocol is handled. When developing such a handler,
several techniques are useful:

• Use log.info() to emit verbose debugging information, for example, when each rule starts and
when it ends.

• Use a system call tracer such as strace or truss to monitor exactly what data is being read and
written to the network.

The script ZEUSHOME/zxtm/bin/trace can assist with this. Type trace –-help for more information.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 52 of 294

Troubleshooting

http://www.ivanti.com/company/legal

• Use tcpdump or wireshark to monitor what the client and server is sending, but be aware that if
a rule is blocked reading from the client, it does not notice that the server has sent any data.

Use the Activity > Connections page in the Admin UI to monitor the connections and individual
requests being handled by the Traffic Manager. This data can be further enhanced with the Traffic
Manager’s Request Tracing capability. With this feature enabled, use the Connections page to provide
detailed information about the time-line for each connection. This can be particularly useful by showing
if a connection is being stalled when running a TrafficScript rule. Refer to the Pulse Secure Virtual Traffic
Manager: User’s Guide for more information on this feature.

A Special Note About pool.use and pool.select
The pool.use() and pool.select() TrafficScript functions are used to decide which Pool should be used to
send the connection to a back-end server. They each take one argument, the name of the Pool to use.

By default, pool.use() and pool.select() only accept a string literal as the Pool name:

pool.use("my webserver pool");

This allows the Traffic Manager to inspect a rule and determine precisely which pools are referenced by
any Virtual Servers that use the rule. This information is used as follows:

• To type check the usage of a Pool, to ensure that only configuration settings relevant to the
protocol the Pool is managing are displayed, and to ensure that the same Pool is not used by
Virtual Servers that manage different traffic protocols.

• To determine which Pools are in use, so it can monitor the behavior of the nodes.

• To display the Pools referenced by a Virtual Server, in the configuration summary, front page
and other parts of the UI.

• To determine when a Pool is no longer used, so that error information can be removed.

However, in some limited circumstances, it is efficient to use a variable to specify the desired Pool.

if($poolname == "pool1") {

pool.use("pool1");

} else if($poolname == "pool2") {

pool.use("pool2");

} else if($poolname == "pool3") {

pool.use("pool3");

} else if($poolname == "pool4") {

pool.use("pool4");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 53 of 294

Troubleshooting

http://www.ivanti.com/company/legal

} # etc.

It would be much more preferable to write the following:

pool.use($poolname);

To enable this behavior, enable the trafficscript!variable_pool_use setting on the System > Global
Settings > Other Settings page in the Admin UI.

Be aware that if you enable the above behavior, the Traffic Manager is not able to determine accurately
which Pools are referenced by a rule, and this limits the internal consistency checks and error
monitoring that it performs for those Pools.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 54 of 294

Troubleshooting

http://www.ivanti.com/company/legal

Function Reference

TrafficScript Core Functions
TrafficScript core functions provide the basic function set for the TrafficScript language, including
support for the core TrafficScript types, mathematical functions, and date and time manipulation.

The core functions are grouped into several families:

• array.: These functions facilitate the use and manipulation of arrays within TrafficScript.

• hash.: These functions facilitate the use and manipulation of hashes (or key/value pairs) within
TrafficScript.

• json.: These functions provide the ability to convert between TrafficScript arrays/hash variables
and JavaScript Object Notation (JSON) strings.

• lang.: These functions deal with language-specific tasks like forced type conversions.

• math.: These functions provide mathematical operations.

• string.: These functions operate on strings and other sequences of data.

• string.gmtime.: These functions are used to format time values.

• sys.: These functions return operating-system related parameters, such as the hostname.

• sys.(gmtime./.localtime./.time.): These functions are used to format time values.

TrafficScript function names are not case sensitive. Therefore, the function lang.todouble() can be
invoked using lang.toDouble(), Lang.ToDouble(), and lang.todouble().

Many functions take parameters and return values with specific types. TrafficScript casts variables and
values to the appropriate type as described in Type Casts in TrafficScript.

array.append(array1, array2)

Appends each element of array2 to the end of array1. Note that this behaviour is different to that of
array.push(), which would add one new element to the end of array1 containing array2. The return value
of this function can be used as the argument to another function to perform multiple operations on the
same array.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 55 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Append 4, 5 and 6 to the array

$numbers = [1, 2, 3];

array.append($numbers, [4, 5, 6]);

$numbers is now [1, 2, 3, 4, 5, 6]

See also: "array.push(array, value)" on page 59

array.contains(array, value)

Returns whether or not the supplied array contains the specified value as an element. Note that it will
not match elements inside sub-arrays.

Sample Usage
$array = ["one", "two", ["three", "four"]];

true

array.contains($array, "one");

false

array.contains($array, "three");

See also: "array.filter(array, pattern, [flags])" on the next page

array.copy(array)

Returns a copy of the supplied array. This is semantically equivalent to `$arraycopy = $array`, however it
will warn if the variable passed to it is not an array.

Sample Usage
Loop around a sorted version of an array without

permanently sorting it

$arr = ["London", "Berlin", "Lisbon", "Paris"];

foreach($val in array.sort(array.copy($arr))) {

log.info($val);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 56 of 294

Function Reference

http://www.ivanti.com/company/legal

$arr will be unsorted here

See also: "array.create(size, [default])" below

array.create(size, [default])

Creates a new array of the specified size and optionally fills the array with the default data.

Sample Usage
Create an array of length 20 with all the elements

set to zero.

$zeroarray = array.create(20, 0);

See also: "array.resize(array, size, [default])" on page 59, "array.copy(array)" on the previous page

array.filter(array, pattern, [flags])

Removes elements from the supplied array that do not match the pattern. The optional 'flags'
parameter contains a string of single-letter options. The following options are supported:

• 'i', meaning 'case insensitive' - letters in the pattern match both upper and lower case letters.

• '!', meaning negate - elements of the array that match the regular expression are removed.

The return value of this function can be used as the argument to another function to perform multiple
operations on the same array.

Sample Usage
Get the extension headers for this request

$headers = http.listHeaderNames();

$extensions = array.filter($headers, "^X-", "i");

array.join(array, [separator])

Concatenates all the elements of the supplied array into a string separated by the separator. The
elements will be separated by a space if no separator is supplied. Note that a warning will be printed
should the supplied array itself contain any arrays or hashes.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 57 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Print a comma-separated list of names

$names = ["alice", "bob", "mallory"];

log.info(array.join($names, ", "));

See also: "string.split(string, [separator])" on page 101

array.length(array)

Returns the length of the supplied array

Sample Usage
See how many HTTP headers there are

$headers = http.listHeaderNames();

log.info("There are "

. array.length($headers)

. " headers in this request");

array.pop(array)

Removes the last element of the supplied array and returns it as the result of the function.

Sample Usage
$stack = [];

array.push($stack, 3);

array.push($stack, 2);

array.push($stack, 1);

$stack is now [3, 2, 1];

Prints 1 2 3

while(array.length($stack) > 0) {

log.info(array.pop($stack));

}

See also: "array.unshift(array, value)" on page 62, "array.push(array, value)" on the next page,
"array.shift(array)" on page 60

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 58 of 294

Function Reference

http://www.ivanti.com/company/legal

array.push(array, value)

Adds the supplied value to the end of the supplied array. The return value of this function can be used
as the argument to another function to perform multiple operations on the same array.

Sample Usage
Append 4 to the array

$numbers = [1, 2, 3];

array.push($numbers, 4);

See also: "array.shift(array)" on the next page, "array.unshift(array, value)" on page 62, "array.pop(
array)" on the previous page

array.resize(array, size, [default])

Resizes the supplied array to the specified size. If the size of the array is being increased and the default
parameter is specified then the new elements added to the array will be set to the default parameter. If
the new size is smaller than the original size then the appropriate number of elements will be removed
from the end of the array. The return value of this function can be used as the argument to another
function to perform multiple operations on the same array.

Sample Usage
We're only interested in the first

10 lines of body data - but fill in the

rest with blank lines if there are fewer

than 10 lines.

$body = array.resize(http.getBodyLines(), 10, "");

See also: "array.create(size, [default])" on page 57

array.reverse(array)

Reverses the elements of the supplied array. The return value of this function can be used as the
argument to another function to perform multiple operations on the same array.

Sample Usage
$array = [1, 2, 3, [4, 5]];

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 59 of 294

Function Reference

http://www.ivanti.com/company/legal

array will be [[4, 5], 3, 2, 1]

array.reverse($array);

See also: "array.sort(array, [reverse])" below

array.shift(array)

Removes the first element of the supplied array and returns it as the result of the function.

Sample Usage
$array = [1, 2, 3, 4];

Empty an array from the front while printing

its contents

while(array.length($array) > 0) {

log.info(array.shift($array));

}

See also: "array.unshift(array, value)" on page 62, "array.push(array, value)" on the previous page,
"array.pop(array)" on page 58

array.sort(array, [reverse])

Sorts the supplied array alphanumerically. If the optional reverse parameter is true, then the array will
be sorted in reverse. The return value of this function can be used as the argument to another function
to perform multiple operations on the same array.

Sample Usage
Sort the keys of a hash before iterating over them

foreach($key in array.sort(hash.keys($hash))) {

log.info($key . " maps to " . $hash[$keys]);

}

Sort these numbers alphanumerically

$sorted = array.sort([1, 2, 3, 4, 10, 11]);

The result will be [1, 10, 11, 2, 3, 4]

Reverse sort these numbers alphanumerically

$rev = array.sort([1, 2, 3, 4, 10, 11], true);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 60 of 294

Function Reference

http://www.ivanti.com/company/legal

The result will be [4, 3, 2, 11, 10, 1]

See also: "array.sortNumerical(array, [reverse])" below

array.sortNumerical(array, [reverse])

Sort the supplied array numerically in ascending order. If the optional reverse parameter is true, then
the array will be sorted in descending order. The return value of this function can be used as the
argument to another function to perform multiple operations on the same array.

Sample Usage
Sort an array of numbers

$numbers = [2, 10, "3", "4", 24, "11"];

array.sortNumerical($numbers);

$numbers is now [2, "3", "4", 10, "11", 24]

Reverse sort an array of numbers

array.sortNumerical($numbers, true);

$numbers is now [24, "11", 10, "4", "3", 2]

See also: "array.sort(array, [reverse])" on the previous page

array.splice(array, offset, length, [values])

Replace elements in the supplied array. Any elements between offset and length will be removed from
the array and any extra values specified after the length parameter will be inserted into the array at that
location. The return value of this function can be used as the argument to another function to perform
multiple operations on the same array.

Sample Usage
$numbers = [0, 1, 2, 3, 4, 5];

Starting from element 2, remove one element

and insert "a" and "b" into the array

array.splice($numbers, 2, 1, "a", "b");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 61 of 294

Function Reference

http://www.ivanti.com/company/legal

$numbers is now [0, 1, "a", "b", 3, 4, 5]

Starting at element 0, remove 3 elements

array.splice($numbers, 0, 3);

$numbers is now ["b", 3, 4, 5]

See also: "array.filter(array, pattern, [flags])" on page 57

array.unshift(array, value)

Adds the supplied value to the front of the supplied array. The return value of this function can be used
as the argument to another function to perform multiple operations on the same array.

Sample Usage
Prepend 1 to the array

$numbers = [2, 3, 4];

array.unshift($numbers, 1);

See also: "array.shift(array)" on page 60, "array.push(array, value)" on page 59, "array.pop(array)" on
page 58

hash.contains(hash, key)

Returns whether the supplied hash contains a particular key.

Sample Usage
See if bob is in the hash of users

and if so, whether his password matches

if(hash.contains($users, "bob")) {

if($users["bob"] == $password) {

Access granted

} else {

Access denied

}

} else {

User does not exist

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 62 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "hash.keys(hash)" on the next page

hash.count(hash)

Returns the number of items in the hash.

Sample Usage
See how many HTTP headers there are

$headers = http.getHeaders();

log.info("There are "

. hash.count($headers)

. " headers in this request");

hash.delete(hash, key)

Deletes the specified key from the hash. The return value of this function can be used as the argument
to another function to perform multiple operations on the same hash.

Sample Usage
$hash = ["orange" => "fruit",

"apple" => "fruit",

"cabbage" => "vegetable",

"pear" => "fruit"];

hash.delete($hash, "cabbage");

keys will be orange, apple and pear

$keys = hash.keys($hash);

See also: "hash.keys(hash)" on the next page

hash.empty(hash)

Removes all the values from the hash. The return value of this function can be used as the argument to
another function to perform multiple operations on the same hash.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 63 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Empty the contents of a hypothetical set object

sub set.empty($set) {

You cannot do '$set = [];' here because that

would be reassigning the input variable

hash.empty($set);

}

set.empty($my_set);

See also: "hash.keys(hash)" below

hash.keys(hash)

Returns an array containing the keys that map to values in the supplied hash data structure.

Sample Usage
Get the set of IPs that have connected to the site

$ips = data.get("connected_ips");

$ips[request.getRemoteIP()] = 1;

data.set("connected_ips", $ips);

$connected_set = hash.keys($ips);

log.info(array.length($connected_set) .

" unique IPs have connected to the site");

See also: "hash.values(hash)" below

hash.values(hash)

Returns an array containing the values that have been mapped to in the hash.

Sample Usage
Add up the values of a hash

$values = hash.values($hash);

$total = 0;

foreach($val in $values) {

$total += $val;

}

log.info("The total is " . $total);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 64 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "hash.keys(hash)" on the previous page

json.deserialize(json_string)

Converts the supplied string in JavaScript Object Notation (JSON) into a TrafficScript array or hash
variable. If the supplied string is not in the correct format then a warning will be printed and the result
will be empty.

Sample Usage
Deserialising a JSON array

$json_array = '["element 1", "element 2"]';

$array = json.deserialize($json_array);

Deserialising a JSON hash

$json_object = '{ "key 1":"value 1", \

"key 2":["array element"] }';

$hash = json.deserialize($json_object);

See also: "json.serialize(object)" below

json.serialize(object)

Converts the supplied array or hash variable into JavaScript Object Notation (JSON). This format is
commonly used to exchange data between online applications.

Sample Usage
Serialising an array

$array = ["element 1", "element 2"];

$json_array = json.serialize($array);

Serialising a hash

$hash = ["key 1" => "value 1",

"key 2" => ["array element"]];

$json_object = json.serialize($hash);

See also: "json.deserialize(json_string)" above

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 65 of 294

Function Reference

http://www.ivanti.com/company/legal

lang.assert(condition, message)

If the condition is false, prints a warning to the log with the current line number and terminates the rule.
If the condition is true then no messages will be printed and the rule will continue as normal.

Sample Usage
Make sure that this rule is only run with

Virtual Servers that are using SSL Decryption.

lang.assert(ssl.isSSL(),

"This rule should only be used \

with decrypted SSL connections");

See also: "lang.warn(message)" on page 70

lang.chr(number)

Converts a number to the corresponding ASCII character. chr() may be used as an alias for lang.chr().

Sample Usage
Pick a random letter from A - Z

$char = lang.chr(math.random(26) + 65);

Alternative name: chr

See also: "lang.ord(string)" on page 68

lang.dump(variable)

Converts the supplied variable into a human-readable string. This function is useful for printing the
contents of arrays and hashes when debugging TrafficScript rules.

Sample Usage
Print the headers of the current HTTP request

log.info(lang.dump(http.getHeaders()));

lang.isarray(data)

Returns whether or not the supplied data is an array.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 66 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
sub passMeAnArray($array) {

Test whether the supplied data is an array

if(!lang.isArray($array)) {

return false;

}

...

}

See also: "lang.ishash(data)" below

lang.ishash(data)

Returns whether or not the supplied data is a hash.

Sample Usage
sub passMeAHash($hash) {

Test whether the supplied data is a hash

if(!lang.isHash($hash)) {

return false;

}

...

}

See also: "lang.isarray(data)" on the previous page

lang.max(param1, param2)

Returns the maximum value of the two parameters provided. If both parameters are strings, it uses a
string comparison; otherwise, the parameters are promoted to integers or doubles and compared. max
() may be used as a shorthand for lang.max().

Sample Usage
$r = lang.max(9, 10); # returns 10

$s = lang.max("9", "10"); # returns "9"

$r = lang.max(2, "4.8"); # returns 4.8

Alternative name: max

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 67 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "lang.min(param1, param2)" below

lang.min(param1, param2)

Returns the minimum value of the two parameters provided. If both parameters are strings, it uses a
string comparison; otherwise, the parameters are promoted to integers or doubles and compared. min()
may be used as a shorthand for lang.min().

Sample Usage
$r = lang.min(9, 10); # returns 9

$s = lang.min("9", "10"); # returns "10"

$r = lang.min(2, "4.8"); # returns 2

Alternative name: min

See also: "lang.max(param1, param2)" on the previous page

lang.ord(string)

Converts an ascii character to an integer. ord() may be used as a shorthand alias for lang.ord().

Sample Usage
Get the integer value of a character.

$val = lang.ord("A");

Alternative name: ord

See also: "lang.toString(value)" on page 70, "lang.chr(number)" on page 66

lang.toArray(values)

Returns an array of the supplied values.

Sample Usage
$arr = lang.toArray("10", "hello");

See also: "lang.toDouble(value)" on the next page, "lang.toString(value)" on page 70, "lang.toInt(
value)" on the next page

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 68 of 294

Function Reference

http://www.ivanti.com/company/legal

lang.toDouble(value)

Returns the double (floating point) value of its parameter, using the TrafficScript type-casting rules.

Sample Usage
$r = lang.toDouble("3.14157"); # returns 3.14157

$r = lang.toDouble(10); # returns 10

$r = lang.toDouble(3.14175); # returns 3.14175

$r = lang.toDouble("..."); # returns 0.0

Alternative name: toDouble

See also: "lang.toInt(value)" below, "lang.toString(value)" on the next page

lang.toHash(values)

Returns an hash of the supplied key value pairs.

Sample Usage
$hash = lang.toHash("ten", 10, "eleven", 11);

See also: "lang.toDouble(value)" above, "lang.toString(value)" on the next page, "lang.toInt(value)"
below, "lang.toArray(values)" on the previous page

lang.toInt(value)

Returns the integer value of its parameter, using the TrafficScript type-casting rules.

Sample Usage
$r = lang.toInt("10xxx"); # returns 10

$r = lang.toInt(3.14157); # returns 3

$r = lang.toInt(10); # returns 10

$r = lang.toInt("..."); # returns 0

Alternative name: toInt

See also: "lang.toDouble(value)" above, "lang.toString(value)" on the next page

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 69 of 294

Function Reference

http://www.ivanti.com/company/legal

lang.toString(value)

Returns the string value of its parameter, using the TrafficScript type-casting rules.

Sample Usage
$s = lang.toString(10); # returns "10"

$s = lang.toString(3.14157); # returns "3.14157"

$s = lang.toString("10"); # returns "10"

Alternative name: toString

See also: "lang.toInt(value)" on the previous page, "lang.toDouble(value)" on the previous page,
"lang.chr(number)" on page 66, "lang.ord(string)" on page 68

lang.tochar(number)

This function is an alias for lang.chr.

Sample Usage
Pick a random letter from A - Z

$char = lang.tochar(math.random(26) + 65);

Alternative name: tochar

See also: "lang.chr(number)" on page 66

lang.warn(message)

Prints a warning to the log with the line number that this function call appears on. If strict error checking
is enabled then the rule will abort.

Sample Usage
$decoded = string.decrypt($password, "passphrase");

if(!$decoded) {

lang.warn("Failed to decrypt string");

} else {

String decrypt succeeded...

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 70 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "lang.assert(condition, message)" on page 66

math.acos(x)

Calculates the arc cosine of x and returns an angle in radians in the range 0 to pi.

Sample Usage
$acos = math.acos(0); # returns pi/2 (approx.)

Alternative name: acos

See also: "math.cos(angle)" on the next page

math.asin(x)

Calculates the arc sine of x and returns an angle in radians in the range -pi/2 to pi/2.

Sample Usage
$asin = math.asin(0); # returns 0 (approx.)

Alternative name: asin

See also: "math.sin(angle)" on page 75

math.atan(angle)

Calculates the arc tangent of x and returns an angle in radians in the range -pi/2 to pi/2.

Sample Usage
$atan = math.atan(0); # returns 0 (approx.)

Alternative name: atan

See also: "math.tan(angle)" on page 75

math.ceil(value)

Returns the smallest integer greater than or equal to its parameter.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 71 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
$r = math.ceil(6.28); # returns 7

$r = math.ceil("4"); # returns 4

Alternative name: ceil

See also: "math.floor(value)" on the next page, "math.rint(value)" on page 74, "math.fabs(value)"
below

math.cos(angle)

Interprets its parameter as an angle in radians and returns its cosine.

Sample Usage
$cos = math.cos(6.28314); # returns 1 (approx.)

Alternative name: cos

See also: "math.sin(angle)" on page 75, "math.tan(angle)" on page 75

math.exp(power)

Calculates e raised to the power of its parameter and returns the result.

Sample Usage
$r = math.exp(math.ln(10)); # returns 10

Alternative name: exp

See also: "math.ln(value)" on the next page, "math.pow(num, power)" on page 74

math.fabs(value)

Interprets its parameter as a floating point number and returns its absolute value.

Sample Usage
$r = math.fabs(-6.28); # returns 6.28

Alternative name: fabs

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 72 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "math.floor(value)" below, "math.ceil(value)" on page 71, "math.rint(value)" on the next
page

math.floor(value)

Returns the largest integer not greater than its parameter.

Sample Usage
$r = math.floor(4.001); # returns 4

$r = math.floor(17); # returns 17

Alternative name: floor

See also: "math.ceil(value)" on page 71, "math.rint(value)" on the next page, "math.fabs(value)" on
the previous page

math.ln(value)

Returns the natural logarithm of its parameter.

Sample Usage
$ln = math.ln(2.71828); # returns 1 (approximately)

Alternative name: ln

See also: "math.log(value)" below, "math.exp(power)" on the previous page

math.log(value)

Returns the base10 logarithm of its parameter.

Sample Usage
$log = math.log(100); # returns 2

Alternative name: log

See also: "math.ln(value)" above, "math.pow(num, power)" on the next page

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 73 of 294

Function Reference

http://www.ivanti.com/company/legal

math.pow(num, power)

Raises its first parameter to the power of its second parameter and returns the result.

Sample Usage
$r = math.pow(2, 3); # returns 8

Alternative name: pow

See also: "math.ln(value)" on the previous page, "math.exp(power)" on page 72, "math.sqrt(num)" on
the next page

math.random(range)

Returns a pseudorandom integer greater than or equal to zero, and less than its parameter. This
function uses a quick pseudo-random number generator meaning that the output of this function is not
suitable for cryptographic purposes.

Sample Usage
returns a value in the range 0 to 99

$rand = math.random(100);

Alternative name: random

See also: "string.randomBytes(length)" on page 95

math.rint(value)

Rounds its parameter by returning the integer closest to its value.

Sample Usage
$r = math.rint(4.25); # returns 4

$r = math.rint(4.75); # returns 5

Alternative name: rint

See also: "math.floor(value)" on the previous page, "math.ceil(value)" on page 71, "math.fabs(value)"
on page 72

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 74 of 294

Function Reference

http://www.ivanti.com/company/legal

math.sin(angle)

Interprets its parameter as an angle in radians and returns its sine.

Sample Usage
$sin = math.sin(6.28314); # returns 0 (approx.)

Alternative name: sin

See also: "math.cos(angle)" on page 72, "math.tan(angle)" below

math.sqrt(num)

Returns the square root of its parameter.

Sample Usage
$root = math.sqrt(2); # returns 1.414 (approx.)

if(lang.toString(math.sqrt($num)) == "nan") {

$num is negative or NaN ...

}

Alternative name: sqrt

See also: "math.pow(num, power)" on the previous page

math.tan(angle)

Interprets its parameter as an angle in radians and returns its tangent.

Sample Usage
$tan = math.tan(6.28314); # returns 0 (approx.)

Alternative name: tan

See also: "math.sin(angle)" above, "math.cos(angle)" on page 72

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 75 of 294

Function Reference

http://www.ivanti.com/company/legal

string.BERToInt(string)

Converts a BER compressed integer into an integer.

Sample Usage
$r = 200

$r = string.BERToInt("\201\110");

Alternative name: BERToInt

See also: "string.intToBER(number)" on page 92, "string.bytesToInt(string)" on page 79

string.Ireplace(string, search, replacement) - deprecated

This function has been deprecated. Use instead "string.replaceI(string, search, replacement)" on
page 99.

Returns a new string, copied from the original string, with the first occurrence of the search string in the
supplied string replaced by the replacement string. This function is case-insensitive.

string.IreplaceAll(string, search, replacement) - deprecated

This function has been deprecated. Use instead "string.replaceAllI(string, search, replacement)" on
page 98.

Returns a new string, copied from the original string, with all occurrences of the search string in the
supplied string replaced by the replacement string. This function is case-insensitive.

string.append(str1, str2, ...)

Returns the result of concatenating all of its inputs together as strings.

Sample Usage
Returns "The answer is 42"

$s = string.append("The ", "answer ", "is " , 42);

Alternative name: append

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 76 of 294

Function Reference

http://www.ivanti.com/company/legal

string.base64Urldecode(Input string, strictMode Flag)

Decodes a base64Url-encoded string and returns the hash of "flag" and "value".

If strict mode is on(1) and invalid input(eg. padding characters, whitespace, line breaks) is given then
hash conatining error flag(1) and empty string is returned.

Base64Url encoding is used for files names and JWT tokens.

Sample Usage
Decodes the JOSE header of JWT token

$token = "eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ\

9.eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQo\

gImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.d\

BjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk";

$splitted = string.split($token, ".");

$hash = string.base64Urldecode($splitted[0], 1);

if($hash["flag"] == 0) {

$jose = $hash["value"];

log.info("JOSE header is: ".$jose);

}

Alternative name: base64Urldecode

See also: "string.base64decode(string)" on the next page, "string.hexdecode(encoded string)" on
page 89, "string.unescape(escaped string)" on page 103

string.base64Urlencode(Input string, strictMode Flag)

Returns the base64Url-encoded version of the provided string.

This converts each group of three characters into a 4-character string containing just [A-Za-z0-9-_], and
'=' for padding if strictMode is off(0).

Base64Url encoding is used for files names and JWT tokens.

Sample Usage
Encodes the JOSE header of JWT token

$header = "{\"typ\":\"JWT\",\"alg\":\"HS256\"}";

$enc = string.base64Urlencode($header, 1);

log.info("Encode JOSE header is: ".$enc);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 77 of 294

Function Reference

http://www.ivanti.com/company/legal

Alternative name: base64Urlencode

See also: "string.base64encode(string)" below, "string.hexdecode(encoded string)" on page 89,
"string.unescape(escaped string)" on page 103

string.base64decode(string)

Decodes a base64-encoded string and returns the result.

Base64 encoding is used for MIME-encoded messages, and in the HTTP Basic Authorization header.

Sample Usage
Decodes a username and password from HTTP

BASIC authentication

$h = http.getHeader("Authorization");

if(string.startsWith($h, "Basic ")) {

$enc = string.skip($h, 6);

$userpasswd = string.base64decode($enc);

log.info("User used: ".$userpasswd);

}

Alternative name: base64decode

See also: "string.base64encode(string)" below, "string.hexdecode(encoded string)" on page 89,
"string.unescape(escaped string)" on page 103

string.base64encode(string)

Returns the base64-encoded version of the provided string. This converts each group of three
characters into a 4-character string containing just [A-Za-z0-9+/], and '=' for padding.

Base64 encoding is used for MIME-encoded messages, and in the HTTP Basic Authorization header.

Sample Usage
Encodes a username and password for HTTP

BASIC authentication

$enc = string.base64encode("user:passwd");

$h = "Basic ".$enc;

http.setHeader("Authorization", $h);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 78 of 294

Function Reference

http://www.ivanti.com/company/legal

Alternative name: base64encode

See also: "string.base64decode(string)" on the previous page, "string.hexencode(string)" on page 90,
"string.escape(string)" on page 84

string.bytesToDotted(string)

Converts a network ordered byte string into an IP address.

Sample Usage
The first 4 bytes are the IP address

$ipstr = string.substring($msg, 0, 3);

log.info("IP is ".string.bytesToDotted($ipstr));

Alternative name: bytesToDotted

See also: "string.dottedToBytes(IP address)" on page 82, "string.bytesToInt(string)" below

string.bytesToInt(string)

Converts a byte string in network order to an integer. The byte string should be either 1, 2 or 4 bytes
long.

Sample Usage
$msg starts with a 2-bytes length

$lenstr = string.substring($msg, 0, 1);

$len = string.bytesToInt($lenstr);

$msg = string.substring($msg, 2, 2+$len-1);

Alternative name: bytesToInt

See also: "string.intToBytes(number, [width])" on page 92, "string.bytesToDotted(string)" above,
"string.BERToInt(string)" on page 76

string.cmp(str1, str2)

Compares its two parameters as strings in a case-sensitive manner. It returns a negative value if str1 is
less than str2; zero if they are equal, and a positive value if str1 is greater than str2.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 79 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
if(string.cmp($a, "HTTP/1.0") == 0) {

$a is "HTTP/1.0"

}

if(string.cmp($a, $b) < 0) {

$a is less than $b

}

Alternative name: cmp

See also: "string.icmp(str1, str2)" on page 91

string.contains(haystack, needle)

Searches for the provided string (the needle) in the given source (the haystack).

It returns 1 if the 'needle' was found, or 0 otherwise.

Sample Usage
if(string.contains($cookie, "chocolate")) {

The cookie contains chocolate ...

}

Alternative name: contains

See also: "string.containsI(haystack, needle)" below, "string.find(haystack, needle, [start])" on page 85,
"string.findr(haystack, needle, [distanceFromEndToStart])" on page 86, "string.startsWith(string, prefix
)" on page 101, "string.endsWith(string, suffix)" on page 83

string.containsI(haystack, needle)

Searches for the provided string (the needle) in the given source (the haystack). It is case-insensitive.

It returns 1 if the 'needle' was found, or 0 otherwise.

Sample Usage
if(string.containsI($path, "danger")) {

The path contains danger ...

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 80 of 294

Function Reference

http://www.ivanti.com/company/legal

Alternative name: containsI

See also: "string.contains(haystack, needle)" on the previous page, "string.findI(haystack, needle,
[start])" on page 86, "string.startsWithI(string, prefix)" on page 102, "string.endsWithI(string, suffix)"
on page 83

string.count(haystack, needle, [start])

Searches from the start of a string, counting the number of times that the provided search string (the
needle) is found inside the given string (the haystack). An optional parameter can specify the start
position for the search.

It returns the number of times that the string is found.

Sample Usage
Returns 2

$r = string.count("This is it!", "is");

Returns 1, no overlaps allowed

$s = string.count("ooo", "oo");

Alternative name: count

See also: "string.find(haystack, needle, [start])" on page 85, "string.contains(haystack, needle)" on the
previous page

string.decrypt(string, passphrase)

Returns the decrypted version of a string that has previously been encrypted using string.encrypt(). The
passphrase supplied must match that given to string.encrypt(), otherwise the decoding will fail.

An empty string is returned if the decrypt or the integrity check fails.

Sample Usage
Decrypt the 'kart' cookie

$cookie = http.getcookie("kart");

if($cookie != "") {

$cookie = string.decrypt($cookie, $passphrase);

if($cookie == "") {

log.warn("User modified kart cookie");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 81 of 294

Function Reference

http://www.ivanti.com/company/legal

http.removecookie("kart");

} else {

http.setcookie("kart", $cookie);

}

}

Alternative name: decrypt

See also: "string.encrypt(string, passphrase)" on the next page

string.dottedToBytes(IP address)

Converts an IP address to a network order byte string.

Sample Usage
Prepend the client IP onto $msg

$ip = request.getRemoteIP();

$msg = string.dottedToBytes($ip).$msg;

Alternative name: dottedToBytes

See also: "string.bytesToDotted(string)" on page 79, "string.intToBytes(number, [width])" on page 92

string.drop(string, count)

Returns all but the last 'count' characters from the end of the provided string. An empty string will be
returned if 'count' is greater than the length of the original string.

Sample Usage
returns "www.example"

$s = string.drop("www.example.com", 4);

Alternative name: drop

See also: "string.skip(string, count)" on page 100, "string.trim(string)" on page 102

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 82 of 294

Function Reference

http://www.ivanti.com/company/legal

string.encrypt(string, passphrase)

Encrypts a string using the provided pass phrase. The returned string is encrypted using the AES block
cipher, using an expanded form of the passphrase as the cipher key. A MAC is also added to ensure the
integrity of the string.

This is open to replay attacks, and as such, should not be used to encrypt sensitive data, such as credit
card details.

Sample Usage
Encrypt the 'kart' cookie

$cookie = http.getresponsecookie("kart");

if($cookie != "") {

$cookie = string.encrypt($cookie, $passphrase);

http.setresponsecookie("kart", $cookie);

}

Alternative name: encrypt

See also: "string.decrypt(string, passphrase)" on page 81

string.endsWith(string, suffix)

Returns 1 if the provided string ends with the given suffix, and 0 otherwise.

Sample Usage
if(string.endsWith($url, ".cgi")) {

Request is for a CGI script ...

}

Alternative name: endsWith

See also: "string.endsWithI(string, suffix)" below, "string.startsWith(string, prefix)" on page 101,
"string.contains(haystack, needle)" on page 80

string.endsWithI(string, suffix)

Returns 1 if the provided string ends with the given suffix, and 0 otherwise. It is case-insensitive.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 83 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
if(string.endsWithI($path, "victory")) {

The path ends with victory

}

Alternative name: endsWithI

See also: "string.endsWith(string, suffix)" on the previous page, "string.startsWithI(string, prefix)" on
page 102, "string.containsI(haystack, needle)" on page 80

string.escape(string)

Returns a percent-encoded version of its parameter.

Control characters and spaces (character value <= 32) and '%' characters are each replaced by a '%'
symbol, followed by their 2-digit hex value.

Sample Usage
returns "Hello%20World!%0D%0A"

$s = string.escape("Hello World!\r\n");

Alternative name: escape

See also: "string.unescape(escaped string)" on page 103, "string.hexencode(string)" on page 90,
"string.regexescape(string)" on page 95, "string.urlencode(string)" on page 103

string.extractHost(string)

Returns the host part of the supplied address if it is a valid IP or hostname. Otherwise the empty string
is returned.

Sample Usage
sub lookup_proxy($path) {

Code to map a path to a node

}

Send certain requests to an external server

$forward = lookup_proxy(http.getPath());

if($forward

&& $host = string.extractHost($forward)) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 84 of 294

Function Reference

http://www.ivanti.com/company/legal

if(!$port = string.extractPort($forward)) {

$port = 80;

}

pool.use("External", $host, $port);

}

Alternative name: extractHost

See also: "string.extractPort(string)" below

string.extractPort(string)

Returns the port part of the supplied address if both the host and port of the supplied address are valid.
Otherwise the empty string is returned.

Sample Usage
Get the SIP request's next destination

$next = sip.getRequestHeader("Route");

string.regexmatch($next, "^<sip:(.*?)>");

$next = $1;

Get the port number of the destination

if($port = string.extractPort($next)) {

if($port < 1024) {

Don't forward the message

sip.sendResponse("403", "Forbidden");

}

}

Alternative name: extractPort

See also: "string.extractHost(string)" on the previous page

string.find(haystack, needle, [start])

Reports whether the provided search string (the needle) is contained inside the given string (the
haystack). An optional parameter can specify the start position for the search.

It returns the location of the first instance of the search string; note that character positions start at 0.

If it could not find the search string, it returns -1.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 85 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
$r = string.find("This is it!", "is"); # Returns 2

Alternative name: find

See also: "string.findI(haystack, needle, [start])" below, "string.findr(haystack, needle,
[distanceFromEndToStart])" below, "string.contains(haystack, needle)" on page 80

string.findI(haystack, needle, [start])

Reports whether the provided search string (the needle) is contained inside the given string (the
haystack). An optional parameter can specify the start position for the search. It is case-insensitive.

It returns the location of the first instance of the search string; note that character positions start at 0.

If it could not find the search string, it returns -1.

Sample Usage
Returns 0

$r = string.findI("The way of the warrior", "the");

Alternative name: findI

See also: "string.find(haystack, needle, [start])" on the previous page, "string.containsI(haystack,
needle)" on page 80

string.findr(haystack, needle, [distanceFromEndToStart])

Searches backwards from the end of a string, determining whether the provided search string (the
needle) is contained inside the given string (the haystack). An optional parameter can specify the start
position for the search, measured from the end of the string (so setting it to 1 skips the last character in
the string).

It returns the location of the last instance of the search string; note that character positions start at 0.

If it could not find the search string, it returns -1.

Sample Usage
Returns 8 (the 'i' in it)

$r = string.findr("This is it!", "i");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 86 of 294

Function Reference

http://www.ivanti.com/company/legal

Returns 5 (the 'i' in is)

$r = string.findr("This is it!", "i", 3);

Alternative name: findr

See also: "string.find(haystack, needle, [start])" on page 85, "string.contains(haystack, needle)" on
page 80

string.hash(string)

Returns a number representing a hash of the provided string. When using string.hash(), negative
numbers can be returned for the hash value. The returned value should not be relied on to be
consistent across different releases of the software.

Sample Usage
$hash = string.hash(http.getRawURL());

connection.setPersistenceKey($hash % 1000);

Alternative name: hash

string.hashMD5(string)

Returns the MD5 hash of the provided string. The returned string will be 16 bytes long, and may contain
non-printable characters.

Sample Usage
$hash = string.hashMD5($data);

Alternative name: hashMD5

See also: "string.hexencode(string)" on page 90, "string.hashSHA1(string)" on the next page,
"string.hashSHA256(string)" on the next page, "string.hashSHA384(string)" on the next page,
"string.hashSHA512(string)" on page 89

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 87 of 294

Function Reference

http://www.ivanti.com/company/legal

string.hashSHA1(string)

Returns the SHA1 hash of the provided string. The returned string will be 20 bytes long, and may
contain non-printable characters.

Sample Usage
$hash = string.hashSHA1($data);

Alternative name: hashSHA1

See also: "string.hexencode(string)" on page 90, "string.hashMD5(string)" on the previous page,
"string.hashSHA256(string)" below, "string.hashSHA384(string)" below, "string.hashSHA512(string)"
on the next page

string.hashSHA256(string)

Returns the SHA-256 hash of the provided string. The returned string will be 32 bytes long, and may
contain non-printable characters.

Sample Usage
$hash = string.hashSHA256($data);

Alternative name: hashSHA256

See also: "string.hexencode(string)" on page 90, "string.hashSHA1(string)" above, "string.hashMD5(
string)" on the previous page, "string.hashSHA384(string)" below, "string.hashSHA512(string)" on the
next page

string.hashSHA384(string)

Returns the SHA-384 hash of the provided string. The returned string will be 48 bytes long, and may
contain non-printable characters.

Sample Usage
$hash = string.hashSHA384($data);

Alternative name: hashSHA384

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 88 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "string.hexencode(string)" on the next page, "string.hashSHA1(string)" on the previous
page, "string.hashMD5(string)" on page 87, "string.hashSHA256(string)" on the previous page,
"string.hashSHA512(string)" below

string.hashSHA512(string)

Returns the SHA-512 hash of the provided string. The returned string will be 64 bytes long, and may
contain non-printable characters.

Sample Usage
$hash = string.hashSHA512($data);

Alternative name: hashSHA512

See also: "string.hexencode(string)" on the next page, "string.hashSHA1(string)" on the previous
page, "string.hashMD5(string)" on page 87, "string.hashSHA256(string)" on the previous page,
"string.hashSHA384(string)" on the previous page

string.hexToInt(string)

Converts a hexadecimal number to an integer. Returns the first valid hexadecimal value found in the
string, or 0. A prefix of "0x" is accepted, but not required. Negative numbers are also valid.

Sample Usage
Returns 10.

$int = string.hexToInt("0000a");

See also: "string.intToHex(string)" on page 93

string.hexdecode(encoded string)

Returns the hex-decoded version of the provided string. This interprets each character pair as a 2-digit
hex value, replacing it with the corresponding 8-bit character. It does not verify that the original string
was correctly encoded.

Sample Usage
returns "hello"

$s = string.hexdecode("68656C6C6F");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 89 of 294

Function Reference

http://www.ivanti.com/company/legal

Alternative name: hexdecode

See also: "string.hexencode(string)" below, "string.base64decode(string)" on page 78,
"string.unescape(escaped string)" on page 103

string.hexencode(string)

Returns the hex-encoded version of the provided string . This converts each character into a two-
character hex representation, doubling the length of the string.

Sample Usage
Returns "68656C6C6F"

$s = string.hexencode("hello");

Alternative name: hexencode

See also: "string.hexdecode(encoded string)" on the previous page, "string.base64encode(string)" on
page 78, "string.escape(string)" on page 84

string.hmacSHA256(secret_key, string)

Returns the keyed-hash message authentication code (HMAC) for the key and string supplied, using the
SHA-256 algorithm. The returned string will be 32 bytes long, and may contain non-printable
characters.

Sample Usage
$hash = string.hmacSHA256($secret_key, $data);

Alternative name: hmacSHA256

See also: "string.hexencode(string)" above, "string.hashSHA256(string)" on page 88

string.htmldecode(encodedstring)

Returned the HTML-decoded version of a string, converting symbols such as < and "

Sample Usage
$body = string.htmldecode(http.getBody(0));

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 90 of 294

Function Reference

http://www.ivanti.com/company/legal

Alternative name: htmldecode

See also: "string.hexencode(string)" on the previous page

string.htmlencode(string)

Returns the encoded version of the supplied string to make it safe for including in HTML. It converts '<'
to <, '>' to >, ''' to " and '&' to &. Control characters are hex-encoded.

Sample Usage
$html = string.htmlencode($parameter);

Alternative name: htmlencode

See also: "string.htmldecode(encodedstring)" on the previous page, "string.urlencode(string)" on
page 103

string.icmp(str1, str2)

Compares its two parameters as strings in a case-insensitive manner. It returns a negative value if str1 is
less than str2; zero if they are equal, and a positive value if str1 is greater than str2.

Sample Usage
if(string.icmp($a, "Content-Length") == 0) {

$a is "Content-Length"

}

Alternative name: icmp

See also: "string.cmp(str1, str2)" on page 79

string.insertBytes(string, insertion, offset)

Returns a new string with the supplied string inserted into the original string at the offset specified. If
offset < 0, or offset > length(string), the original string is returned unchanged. If offset == 0 the
insertion string is prepended; if offset == length(string) the insertion string is appended.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 91 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
$r = "he was Othello"

$r = string.insertbytes("hello", " was Othe", 2);

$r = "hello world"

$r = string.insertbytes("hello", " world", 5);

$r = "I say hello"

$r = string.insertbytes("hello", "I say ", 0);

Alternative name: insertBytes

See also: "string.replaceBytes(string, replacement, offset)" on page 99

string.intToBER(number)

Converts an integer into a BER compressed integer (which is a variable-length binary string encoding).

Sample Usage
$r = "\201\110"

$r = string.intToBER(200);

Alternative name: intToBER

See also: "string.BERToInt(string)" on page 76, "string.intToBytes(number, [width])" below

string.intToBytes(number, [width])

Converts an integer to a network order byte string of the specified width. Only widths of 1, 2 and 4 are
permitted, and the width defaults to 4 if it is not supplied.

Sample Usage
Prepend $msg with its length, as a 4-byte int

$msg = string.insertBytes($msg,

string.intToBytes(string.len($msg)),

0);

Alternative name: intToBytes

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 92 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "string.bytesToInt(string)" on page 79, "string.bytesToDotted(string)" on page 79,
"string.intToBER(number)" above

string.intToHex(string)

Converts an integer into a hexadecimal string.

Sample Usage
Returns "0000cafe"

$hex = string.intToHex(51966);

See also: "string.hexToInt(string)" on page 89

string.ipmaskmatch(IP Address, CIDR IP Subnet)

Returns 1 if the provided IP address is contained in the CIDR IP Subnet, and 0 otherwise.

It interprets its first parameter as a string containing an IP address, and its second parameter as an CIDR
IP subnet. CIDR IP subnets can be of the form "10.0.1.0/24", "10.0.1.0/255.255.255.0", "10.0.1." or
"10.0.1.1".

For IPv6, the standard notation of "2001:200:0:8002::/64" is supported.

Sample Usage
if(string.ipmaskmatch($ip, "10.0.0.0/8")) {

IP is in the 10.*.*.* subnet ...

}

Alternative name: ipmaskmatch

See also: "string.validIPAddress(string)" on page 104

string.left(string, count)

Returns the first 'count' characters of the provided string. An empty string will be returned if 'count' is
less than or equal to zero.

Sample Usage
returns "#!"

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 93 of 294

Function Reference

http://www.ivanti.com/company/legal

$s = string.left("#!/bin/sh", 2);

Alternative name: left

See also: "string.skip(string, count)" on page 100

string.len(string)

Interprets its parameter as a string and returns its length (in bytes).

Sample Usage
$len = string.len("Hello world!"); # returns 12

Alternative name: len

string.length(string)

This function is an alias for string.len.

Sample Usage
$len = string.length("Hello world!"); # returns 12

Alternative name: length

See also: "string.len(string)" above

string.lowercase(string)

Returns a new string containing all characters in the provided string converted to lowercase. The
provided string is not modified.

Sample Usage
$s = string.lowercase("AbCdEfG"); # Returns "abcdefg"

Alternative name: lowercase

See also: "string.uppercase(string)" on page 103

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 94 of 294

Function Reference

http://www.ivanti.com/company/legal

string.normalizeIPAddress(string)

Returns a unique string representation of an IP address: all leading zeros are removed, and for IPv6
addresses the longest occurrence of a block of more than one consecutive zero is replaced by "::". If
there is more than one such block then the first one is replaced. This normal form can be used to
compare IP addresses without ambiguity and is also the form used by TrafficScript functions returning
IP addresses. If the string is not a valid IP address, the empty string is returned.

Sample Usage
$remote_ip = request.getremoteip();

$client = string.normalizeipaddress(

"2001::0157:0:0:0:0:006a");

$client is now "2001:0:157::6a"

if($remote_ip == $client){

do something specific for this client

}

Alternative name: normalizeIPAddress

See also: "string.validIPAddress(string)" on page 104

string.randomBytes(length)

Returns a string of the supplied length filled with random bytes. The random number generator used by
this function generates output that is suitable for use in cryptographic operations.

Sample Usage
Get a string 16 bytes long filled with random data

$str = string.randomBytes(16);

Alternative name: randomBytes

See also: "math.random(range)" on page 74

string.regexescape(string)

Returns a version of its parameter suitable for using inside a regex match as a string literal.

All characters in the string that aren't a-z, A-Z, 0-9 or '_' are escaped using a backslash.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 95 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
$str = "10.100.230.5";

$escaped = string.regexescape($str);

if(string.regexmatch($line, $escaped)) {

log.info("Line matched: " . $str);

}

Alternative name: regexescape

See also: "string.escape(string)" on page 84

string.regexmatch(string, regex, [flags]))

Performs a regular expression match on the supplied string. If the regular expression 'regex' contains
bracketed sub-expressions, then the variables $1 ... $9 will be set to the matching substrings.

Note that the '\' character is an escape character in TrafficScript strings enclosed with double quotation
marks. If you need to put a literal '\' in a regular expression, you must escape it as '\\' or enclose the
string in single quotation marks. To match a literal string inside a regular expression use the
string.regexEscape function.

The optional 'flags' parameter contains a string of single-letter options. The following options are
supported:

• 'i', meaning 'case insensitive' - letters in the pattern match both upper and lower case letters.

It returns 1 if matched, and 0 otherwise.

If the regular expression is constructed from client supplied data, see the security considerations in the
"Administration System Security" chapter of the User's Guide.

Sample Usage
$id = "user=Joe, password=Secret";

if(string.regexmatch(

$id, "^user=(.*), password=(.*)$")) {

log.info("Got UserID: ".$1.", Password: ".$2);

}

$name = "Name(Bob)";

string.regexmatch($name, 'Name\((\S+) \)');

log.info($1); # prints Bob

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 96 of 294

Function Reference

http://www.ivanti.com/company/legal

Alternative name: regexmatch

See also: "string.wildmatch(string, pattern)" on page 105, "string.regexsub(string, regex, replacement,
[flags])" below, "string.regexescape(string)" on page 95

string.regexsub(string, regex, replacement, [flags])

Returns a new string containing the results of a regular expression match on the supplied string,
replacing each matching substring with the supplied replacement. The replacement string may contain
$1 .. $9 substitutions, which reference bracketed sub-expressions in the regular expression.

Note that the '\' character is an escape character in TrafficScript strings enclosed with double quotation
marks. If you need to put a literal '\' in a regular expression, you must escape it as '\\' or enclose the
string in single quotation marks. To match a literal string inside a regular expression use the
string.regexEscape function.

The optional 'flags' parameter contains a string of single-letter options. The following options are
supported:

• 'g', meaning 'global replace' - apply the regex pattern as many times as possible.

• 'i', meaning 'case insensitive' - letters in the pattern match both upper and lower case letters.

string.regexsub() returns the string with the replacements.

If the regular expression is constructed from client supplied data, see the security considerations in the
"Administration System Security" chapter of the User's Guide.

Sample Usage
Rewrite incoming URL

$url = string.regexsub($url, "^/(.*)/secure",

"/$1/private");

Remove cookieless session from URL

e.g. "/(sessionid)/app/index" => "/app/index"

$url = string.regexsub($url, '/\(\S+\)/', "/");

Alternative name: regexsub

See also: "string.regexmatch(string, regex, [flags]))" on the previous page

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 97 of 294

Function Reference

http://www.ivanti.com/company/legal

string.replace(string, search, replacement)

Returns a new string, copied from the original string, with the first occurrence of the search string in the
supplied string replaced by the replacement string. This function is case-sensitive.

Sample Usage
Rewrite incoming URL

$url = string.replace($url, "/secure", "/private");

Alternative name: replace

See also: "string.replaceI(string, search, replacement)" on the next page, "string.replaceAll(string,
search, replacement)" below, "string.replaceAllI(string, search, replacement)" below

string.replaceAll(string, search, replacement)

Returns a new string, copied from the original string, with all occurrences of the search string in the
supplied string replaced by the replacement string. This function is case-sensitive.

Sample Usage
Rewrite incoming URL

$url = string.replaceAll($url, "/in", "/out");

Alternative name: replaceAll

See also: "string.replaceAllI(string, search, replacement)" below, "string.replace(string, search,
replacement)" above, "string.replaceI(string, search, replacement)" on the next page

string.replaceAllI(string, search, replacement)

Returns a new string, copied from the original string, with all occurrences of the search string in the
supplied string replaced by the replacement string. This function is case-insensitive.

Sample Usage
Rewrite incoming URL

$url = string.replaceAllI($url, "/in", "/out");

Alternative name: replaceAllI

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 98 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "string.replaceAll(string, search, replacement)" on the previous page, "string.replaceI(string,
search, replacement)" below, "string.replace(string, search, replacement)" on the previous page

string.replaceBytes(string, replacement, offset)

Returns a new string, copied from the original string, with the appropriate bytes replaced by the
replacement string at the supplied offset. The new string is the same length as the original string.

If offset < 0, or offset >= length(string), or length(replacement) == 0, string.replaceBytes returns a
copy of the original string.

Sample Usage
$r = "hi lo"

$r = string.replaceBytes("hello", "i ", 1);

$r = "helwo"

$r = string.replaceBytes("hello", "world", 3);

Alternative name: replaceBytes

See also: "string.insertBytes(string, insertion, offset)" on page 91

string.replaceI(string, search, replacement)

Returns a new string, copied from the original string, with the first occurrence of the search string in the
supplied string replaced by the replacement string. This function is case-insensitive.

Sample Usage
Rewrite incoming URL

$url = string.replaceI($url, "/secure", "/private");

Alternative name: replaceI

See also: "string.replace(string, search, replacement)" on the previous page, "string.replaceAllI(string,
search, replacement)" on the previous page, "string.replaceAll(string, search, replacement)" on the
previous page

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 99 of 294

Function Reference

http://www.ivanti.com/company/legal

string.reverse(string)

Returns the characters of a string in reverse order.

Sample Usage
$c = string.reverse("esrever"); # Returns "reverse"

Alternative name: reverse

string.right(string, count)

Returns the last 'count' characters of the provided string. An empty string will be returned if 'count' is
less than or equal to zero.

Sample Usage
returns "sh"

$s = string.right("#!/bin/sh", 2);

Alternative name: right

See also: "string.drop(string, count)" on page 82

string.skip(string, count)

Returns all but the first 'count' characters from the input string. An empty string will be returned if
'count' is greater than the length of the original string.

Sample Usage
returns "/bin/sh"

$s = string.skip("#!/bin/sh", 2);

Alternative name: skip

See also: "string.drop(string, count)" on page 82, "string.trim(string)" on page 102

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 100 of 294

Function Reference

http://www.ivanti.com/company/legal

string.split(string, [separator])

Returns an array containing the substrings of the supplied string that are delimited by the separator.
The separator defaults to a space character, so applying this method to a string without supplying the
separator character will return an array containing all the individual words in the string. Using the empty
string as the separator will return an array with each character as a separate element.

Sample Usage
$words = string.split(http.getResponseBody());

log.info("There were " . array.length($words)

. " words in the response");

See also: "array.join(array, [separator])" on page 57

string.sprintf(format string, arguments)

Behaves like the C library sprintf() function. Only %s, %c, %d and %f are supported. The function returns
the generated string.

Sample Usage
$text = string.sprintf(

"Apples: %3d Oranges: %3d\n",

$apples, $oranges);

Alternative name: sprintf

See also: "string.append(str1, str2, ...)" on page 76

string.startsWith(string, prefix)

Returns 1 if the provided string starts with the given prefix, and 0 otherwise.

Sample Usage
if(string.startsWith($url, "http://")) {

URL is of the form http://host/uri ...

}

Alternative name: startsWith

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 101 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "string.startsWithI(string, prefix)" below, "string.endsWith(string, suffix)" on page 83,
"string.contains(haystack, needle)" on page 80

string.startsWithI(string, prefix)

Returns 1 if the provided string starts with the given prefix, and 0 otherwise. It is case-insensitive.

Sample Usage
if(string.startsWithI($path, "/tea")) {

The path starts with tea ...

}

Alternative name: startsWithI

See also: "string.startsWith(string, prefix)" on the previous page, "string.endsWithI(string, suffix)" on
page 83, "string.containsI(haystack, needle)" on page 80

string.substring(string, base, end)

Returns the substring starting at character position 'base' and ending at position 'end'.

Note that character positions start at 0, and the end position is inclusive.

Sample Usage
Set $s to "is is a"

$s = string.substring("This is a string", 2, 8);

Alternative name: substring

string.trim(string)

Returns the result of removing leading and trailing white space (and control characters) from its input

Sample Usage
$s = string.trim(" 1234 "); # returns "1234"

Alternative name: trim

See also: "string.skip(string, count)" on page 100, "string.drop(string, count)" on page 82

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 102 of 294

Function Reference

http://www.ivanti.com/company/legal

string.unescape(escaped string)

Returns the escape-decoded version of its parameter.

%-encoded characters are replaced with their decoded versions. %u-encoded characters are replaced
with their UTF-8 representation. If there are illegal digits which cannot safely be converted, the variable
$1 is set to 0 and the result contains '_' in place of the '%'. Such malicious %-escaped URLs are a
common way of attacking unassuming servers or applications, and by handling them in this way, the
attack is thwarted, but some information about a suspicious request is retained.

Sample Usage
returns "\r\n100%"

$s = string.unescape("%0D%0A100%25");

returns "something_BGelse"

$s = string.unescape("something%BGelse");

returns "file.ida"

$s = string.unescape("file.%u0069%u0064%u0061");

Alternative name: unescape

See also: "string.escape(string)" on page 84, "string.hexdecode(encoded string)" on page 89

string.uppercase(string)

Returns a new string containing all characters in the provided string converted to uppercase. The
provided string is not modified.

Sample Usage
$s = string.uppercase("aBcDeFg"); # Returns "ABCDEFG"

Alternative name: uppercase

See also: "string.lowercase(string)" on page 94

string.urlencode(string)

Returns the URL-encoded version of the supplied string to make it safe for including in URLs. It converts
anything other than A-Z a-z 0-9 . - _ to percent+hex form. It encodes reserved characters (RFC 3986)
and % as well. string.urlencodeexceptreserved() should be used instead to exclude those.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 103 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
#$url will be

%2Fcheck%20price%3Famount%3D12%26currency%3D%24

$url = string.urlencode(

"/check price?amount=12¤cy=$");

Alternative name: urlencode

See also: "string.unescape(escaped string)" on the previous page, "string.htmlencode(string)" on
page 91

string.urlencodeexceptreserved(string)

Returns the URL-encoded version of the supplied string to make it safe for including in URLs. It converts
characters except - unreserved characters A-Z a-z 0-9 . - _ - reserved characters / ? # [] @ ! $ & ' () - %
according to RFC 3986 to percent+hex form.

Sample Usage
$url will be

"/check%20price?amount=12¤cy=$"

where space ' ' gets encoded to %20

and leaving /, ?, = and $ as they were.

$url = string.urlencodeexceptreserved(

"/check price?amount=12¤cy=$");

Alternative name: urlencodeexceptreserved

See also: "string.unescape(escaped string)" on the previous page, "string.htmlencode(string)" on
page 91, "string.urlencode(string)" on the previous page

string.validIPAddress(string)

Returns 4 if the string provided is an IPv4 address, 6 if it is an IPv6 address and 0 if it is not a valid IP
address.

Sample Usage
$ipversion = string.validIPAddress($x);

if(4 == $ipversion) {

do something specific to IPv4

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 104 of 294

Function Reference

http://www.ivanti.com/company/legal

} else if(6 == $ipversion) {

do something specific to IPv6

} else {

error: not a valid IP address

}

Alternative name: validIPAddress

See also: "string.ipmaskmatch(IP Address, CIDR IP Subnet)" on page 93

string.wildmatch(string, pattern)

Performs a shell-like wild match on the supplied string. The pattern may contain the wildcard characters
'?' (which matches a single character) and '*' (which matches any substring).

It returns 1 if matched, and 0 otherwise.

Sample Usage
$url = http.getPath();

if(string.wildmatch($url, "*.cgi")) {

Is a request for a CGI script ...

}

Alternative name: wildmatch

See also: "string.regexmatch(string, regex, [flags]))" on page 96

string.gmtime.parse(str)

Parses the supplied string as a time stamp and returns the time in seconds since the epoch (1st Jan
1970). Dates before the epoch or after 2038 will produce unexpected results.

Note: Timezone information contained inside the time string is ignored. The time is always assumed to
be in GMT.

Sample Usage
Parse a string into unix time format

$str = "Tue, 21 Oct 2008 13:44:26 GMT";

$time = string.gmtime.parse($str);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 105 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "sys.gmtime.format(format, unixtime)" on page 108

sys.domainname()

Returns the domain name of the host machine. For example, if the machine is named
"server1.example.com", sys.domainname() will return "example.com".

Sample Usage
$domainname = sys.domainname();

Alternative name: domainname

See also: "sys.hostname()" on the next page

sys.getenv(variable)

Returns the named environment variable, or the empty string if the environment variable does not
exists.

Sample Usage
$zeushome = sys.getenv("ZEUSHOME");

Alternative name: getenv

sys.getnetworkinterfaces(hash_of_options)

Returns a list of network interfaces on the system, with a hash of the following for each one: Bcast,
pppdest, IfName, netmask, MacAddr, IP, up

The following options can be supplied in a hash in order to alter the output:

"include_lo" => [0|1] This option controls whether the list returned should include loopback addresses.
(Default: 1)

"up" => [0|1] If 1, only return interfaces marked as UP. If 0, ignore the UP status. (Default: 0)

Sample Usage
$info = sys.getnetworkinterfaces(["include_lo" => 0,

"up" => 1]);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 106 of 294

Function Reference

http://www.ivanti.com/company/legal

if($info)

{

foreach($ipinfo in $info) {

$ip = $ipinfo["IP"];

$name = $ipinfo["IfName"];

$mac = $ipinfo["MacAddr"];

log.info("---------------------"

. "\n interface = " . $name

. "\n IP = " . $ip

. "\n MAC = " . $mac

);

}

}else {

log.info("No network interfaces returned");

}

sys.getpid()

Returns the process id of the current process.

Sample Usage
$mypid = sys.getpid();

Alternative name: getpid

sys.hostname()

Returns the hostname of the host machine. For example, if the machine is named
"server1.example.com", sys.hostname() will return "server1".

Sample Usage
$hostname = sys.hostname();

Alternative name: hostname

See also: "sys.domainname()" on the previous page

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 107 of 294

Function Reference

http://www.ivanti.com/company/legal

sys.time()

Returns the current system time as the number of seconds since midnight, 1/1/1970.

Sample Usage
$unixtime = sys.time();

Alternative name: time

See also: "sys.timeToString(unixtime)" below, "sys.localtime.format(format, unixtime)" on page 110,
"sys.gmtime.format(format, unixtime)" below, "sys.tztime.format(format, timezone, unixtime)" on
page 115, "sys.time.highres()" on page 111

sys.timeToString(unixtime)

Takes the time in seconds since midnight, 1/1/1970 and if the optional unixtime parameter is provided,
returns a formatted string representing that time. If the unixtime parameter is not given, it returns the
current time as a formatted string.

Sample Usage
Returns "[01/Feb/2004:12:24:51 +2000]"

$tm = sys.timeToString(sys.time());

Alternative name: timeToString

See also: "sys.time()" on the previous page

sys.gmtime.format(format, unixtime)

Converts the time into a string format. This function converts using GM time - see sys.localtime.format()
to convert using localtime.

Format Meaning Format Meaning

%a Mon Tue Wed ... %A Monday Tuesday ...

%b Jan Feb Mar ... %B January February ...

%d Day of month "01"-"31" %D %m/%d/%y

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 108 of 294

Function Reference

http://www.ivanti.com/company/legal

Format Meaning Format Meaning

%e Day of month " 1"-"31" %H Hour of day "00-23"

%h Equivalent to %b %I Hour of day "01" - "12"

%j Julian day of the year "001"
to "366"

%m Month of year "01" - "12"

%M Minute "00" - "59" %n Newline character

%p AM/PM %r Time in %I:%M:%S [AM|PM]

%R %H:%M %S Seconds, output as a
number between "00" and
"61"

%t Tab character %T %H:%M:%S

%u Day of week (1 = Monday, 7
= Sunday)

%w Day of week (0 = Sunday, 6
= Saturday)

%y Year (without century) "00"
to "99"

%Y Year "0000" to "9999"

%Z Time zone ("GMT") %% "%"

If supplied, the optional 'unixtime' parameter specifies the number of seconds since midnight 1/1/1970,
and the function returns a formatted string representing that time. If the 'unixtime' value is not
provided, the current time will be returned.

Sample Usage
Return a time suitable for an HTTP header

e.g. Mon, 14 Aug 2006 12:39:01 GMT

$str = sys.gmtime.format("%a, %d %b %Y %T GMT");

Alternative name: gmtime.format

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" on page 113, "sys.time.minutes(
unixtime)" on page 112, "sys.time.hour(unixtime)" on page 111, "sys.time.weekday(unixtime)" on
page 113, "sys.time.monthday(unixtime)" on page 112, "sys.time.month()" on page 112, "sys.time.year(
unixtime)" on page 114, "sys.time.yearday(unixtime)" on page 114, "sys.localtime.format(format,
unixtime)" on the next page, "string.gmtime.parse(str)" on page 105

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 109 of 294

Function Reference

http://www.ivanti.com/company/legal

sys.localtime.format(format, unixtime)

Converts the time into a string format. This function converts using localtime - see sys.gmtime.format()
to convert using GMT.

Format Meaning Format Meaning

%a Mon Tue Wed ... %A Monday Tuesday ...

%b Jan Feb Mar ... %B January February ...

%d Day of month "01"-"31" %D %m/%d/%y

%e Day of month " 1"-"31" %H Hour of day "00-23"

%h Equivalent to %b %I Hour of day "01" - "12"

%j Julian day of the year "001"
to "366"

%m Month of year "01" - "12"

%M Minute "00" - "59" %n Newline character

%p AM/PM %r Time in %I:%M:%S [AM|PM]

%R %H:%M %S Seconds, output as a
number between "00" and
"61"

%t Tab character %T %H:%M:%S

%u Day of week (1 = Monday, 7
= Sunday)

%w Day of week (0 = Sunday, 6
= Saturday)

%y Year (without century) "00"
to "99"

%Y Year "0000" to "9999"

%Z Time zone (from $TZ) %% "%"

If supplied, the optional 'unixtime' parameter specifies the number of seconds since midnight 1/1/1970,
and the function returns a formatted string representing that time. If the 'unixtime' value is not
provided, the current time will be returned.

Sample Usage
Return a formatted string

e.g. Mon, 14 Aug 2006 12:39:01 EST

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 110 of 294

Function Reference

http://www.ivanti.com/company/legal

$str = sys.localtime.format("%a, %d %b %Y %T EST");

Alternative name: localtime.format

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" on page 113, "sys.time.minutes(
unixtime)" on the next page, "sys.time.hour(unixtime)" below, "sys.time.weekday(unixtime)" on
page 113, "sys.time.monthday(unixtime)" on the next page, "sys.time.month()" on the next page,
"sys.time.year(unixtime)" on page 114, "sys.time.yearday(unixtime)" on page 114, "sys.gmtime.format(
format, unixtime)" on page 108

sys.time.highres()

Returns the current system time as the number of seconds and microseconds since midnight, 1/1/1970.
The value is returned as a double, e.g. 1138417190.823265

Sample Usage
$time = sys.time.highres();

Alternative name: time.highres

See also: "sys.timeToString(unixtime)" on page 108, "sys.localtime.format(format, unixtime)" on the
previous page, "sys.gmtime.format(format, unixtime)" on page 108, "sys.time()" on page 107

sys.time.hour(unixtime)

Returns the hour of the day in local time (0-23).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight 1/1/1970
otherwise the current time will be used.

Sample Usage
$hour = sys.time.hour();

Alternative name: time.hour

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" on page 113, "sys.time.minutes(
unixtime)" on the next page, "sys.time.weekday(unixtime)" on page 113, "sys.time.monthday(unixtime
)" on the next page, "sys.time.yearday(unixtime)" on page 114, "sys.time.month()" on the next page,
"sys.time.year(unixtime)" on page 114, "sys.localtime.format(format, unixtime)" on the previous page

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 111 of 294

Function Reference

http://www.ivanti.com/company/legal

sys.time.minutes(unixtime)

Returns the minutes after the hour in local time (0-59).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight 1/1/1970
otherwise the current time will be used.

Sample Usage
$mins = sys.time.minutes();

Alternative name: time.minutes

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" on the next page, "sys.time.hour(
unixtime)" on the previous page, "sys.time.weekday(unixtime)" on the next page, "sys.time.monthday(
unixtime)" below, "sys.time.yearday(unixtime)" on page 114, "sys.time.month()" below, "sys.time.year(
unixtime)" on page 114, "sys.localtime.format(format, unixtime)" on page 110

sys.time.month()

Returns the month of the year in local time (1-12).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight 1/1/1970
otherwise the current time will be used.

Sample Usage
Find out what the month is tomorrow.

$month = sys.time.month(sys.time() + 86400);

Alternative name: time.month

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" on the next page, "sys.time.minutes(
unixtime)" above, "sys.time.hour(unixtime)" on the previous page, "sys.time.weekday(unixtime)" on
the next page, "sys.time.monthday(unixtime)" below, "sys.time.yearday(unixtime)" on page 114,
"sys.time.year(unixtime)" on page 114, "sys.localtime.format(format, unixtime)" on page 110

sys.time.monthday(unixtime)

Returns the day of the month in local time (1-31).

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 112 of 294

Function Reference

http://www.ivanti.com/company/legal

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight 1/1/1970
otherwise the current time will be used.

Sample Usage
$dayofmonth = sys.time.monthday();

Alternative name: time.monthday

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" below, "sys.time.minutes(unixtime)"
on the previous page, "sys.time.hour(unixtime)" on page 111, "sys.time.weekday(unixtime)" below,
"sys.time.yearday(unixtime)" on the next page, "sys.time.month()" on the previous page, "sys.time.year(
unixtime)" on the next page, "sys.localtime.format(format, unixtime)" on page 110

sys.time.seconds(unixtime)

Returns the seconds after the minute in local time. Normally, it returns a number in the range of (0-59),
but can be up to 61 to allow for leap seconds.

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight 1/1/1970
otherwise the current time will be used.

Sample Usage
$secs = sys.time.seconds();

Alternative name: time.seconds

See also: "sys.time()" on page 107, "sys.time.minutes(unixtime)" on the previous page, "sys.time.hour(
unixtime)" on page 111, "sys.time.weekday(unixtime)" below, "sys.time.monthday(unixtime)" on the
previous page, "sys.time.yearday(unixtime)" on the next page, "sys.time.month()" on the previous
page, "sys.time.year(unixtime)" on the next page, "sys.localtime.format(format, unixtime)" on
page 110

sys.time.weekday(unixtime)

Returns the day of the week in local time (1-7). Sunday has the value 1; Saturday has the value 7.

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight 1/1/1970
otherwise the current time will be used.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 113 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
$dayofweek = sys.time.weekday();

Alternative name: time.weekday

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" on the previous page,
"sys.time.minutes(unixtime)" on page 112, "sys.time.hour(unixtime)" on page 111,
"sys.time.monthday(unixtime)" on page 112, "sys.time.yearday(unixtime)" below, "sys.time.month()"
on page 112, "sys.time.year(unixtime)" below, "sys.localtime.format(format, unixtime)" on page 110

sys.time.year(unixtime)

Returns the year in local time (1970-2038).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight 1/1/1970
otherwise the current time will be used.

Sample Usage
$year = sys.time.year();

Alternative name: time.year

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" on the previous page,
"sys.time.minutes(unixtime)" on page 112, "sys.time.weekday(unixtime)" on the previous page,
"sys.time.monthday(unixtime)" on page 112, "sys.time.yearday(unixtime)" below, "sys.time.month()"
on page 112, "sys.time.year(unixtime)" above, "sys.localtime.format(format, unixtime)" on page 110

sys.time.yearday(unixtime)

Returns the day of the year in local time (1-366).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight 1/1/1970
otherwise the current time will be used.

Sample Usage
$dayofyear = sys.time.yearday();

Alternative name: time.yearday

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 114 of 294

Function Reference

http://www.ivanti.com/company/legal

See also: "sys.time()" on page 107, "sys.time.seconds(unixtime)" on page 113, "sys.time.minutes(
unixtime)" on page 112, "sys.time.hour(unixtime)" on page 111, "sys.time.weekday(unixtime)" on
page 113, "sys.time.monthday(unixtime)" on page 112, "sys.time.month()" on page 112, "sys.time.year(
unixtime)" on the previous page, "sys.localtime.format(format, unixtime)" on page 110

sys.tztime.format(format, timezone, unixtime)

Converts the time into a string format using the time zone specified by the timezone parameter. The
OS-supplied timezone database is used to determine the necessary offset from unixtime (or the current
time).

See sys.localtime.format for a description of the format string.

If supplied, the optional 'unixtime' parameter specifies the number of seconds since midnight 1/1/1970
UTC, and the function returns a formatted string representing that time. If the 'unixtime' value is not
provided, the current time will be returned.

Sample Usage
Format a string with the date and time in the

local time of the remote IP

$ip = request.getRemoteIP();

$str = sys.tztime.format("%a, %d %b %Y %T %Z",

geo.getTimezone($ip));

Alternative name: tztime.format

See also: "sys.gmtime.format(format, unixtime)" on page 108, "sys.localtime.format(format, unixtime)"
on page 110, "geo.getTimezone(ip)" on page 145

Traffic Manager Functions
Traffic Manager TrafficScript functions provide the means to inspect, manipulate and direct traffic
within the Traffic Manager.

The TrafficScript functions are grouped into several families:

• auth.: Functions to query traffic manager administration user authenticators;

• connection.: These low-level functions allow you to query and manipulate the connection
directly;

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 115 of 294

Function Reference

http://www.ivanti.com/company/legal

• connection.data.: These functions allow you to set and query connection-local data;

• counter./counter64.: Provides a simple counter increment mechanism;

• data.: These functions allow you to store and retrieve persistent variables;

• data.local.: As per data. functions, but restricted to a single Traffic Manager child process;

• event.: Provides the ability to trigger a custom event;

• geo.: These functions provide various geo-location abilities to the Traffic Manager Multi-Site
Cluster Management functionality;

• glb.: Functions to control and fine-tune GSLB (Global Server Load Balancing) decisions;

• http.: These helper functions allow you to query and manipulate HTTP connections easily,
without having to parse and interpret the connection directly;

• http.aptimizer.: Provides functions to enable (or bypass) web content optimization on your
services;

• http.cache.: These functions give you control over the Web Cache used for caching HTTP
content;

• http.compress.: These functions allow you to control whether or not compressible responses
are compressed;

• http.kerberos.: Functions to perform operations on connections using Kerberos Protocol
Transition;

• http.request.: These functions can be used to issue HTTP GET or POST requests, and return the
result;

• http.stream.: These functions can be used to manipulate streaming data over HTTP;

• java.: Runs a named Java Extension;

• jwt.: Functions to interact with JSON Web Tokens - a means to securely transmit information
between parties as a JSON object;

• log.: These functions can be used to append messages to the error log file;

• net.dns.: These functions can be used to perform DNS lookups in a TrafficScript rule;

• pool.: These functions are used to select the pool to balance the connection with;

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 116 of 294

Function Reference

http://www.ivanti.com/company/legal

• radius.: Functions to perform operations on a RADIUS Access-Request packet;

• rate.: Use these functions to select a rate shaping class;

• recentconns.: Functions to determine whether or not a connection should be included in the
Recent Connections buffer;

• request.: These low-level functions allow you to query and manipulate the client-side of the
connection directly;

• requestlog.: Functions to determine whether or not a connection should be written to the
request log upon completion;

• resource.: These functions query external resources;

• response.: These low-level functions allow you to query and manipulate the serverside of the
connection directly;

• rtsp.: These functions provide control over Real Time Streaming Protocol (RTSP) traffic;

• rule.: These functions can examine the current rule processing situation;

• sip.: These functions provide control over Session Initiation Protocol (SIP) traffic;

• slm.: These functions are used to query and assign service level monitoring properties to a
connection.

• ssl.: These functions are used to query the SSL parameters of encrypted connections;

• stats.: Functions to extract statistics about connections handled by the Traffic Manager;

• sys.: Functions to query various Traffic Manager system parameters;

• tcp.: These functions are used to read from, and write data to, a TCP socket;

• udp.: Functions to send data to a named host over UDP;

• xml.: These functions are used to query, manipulate and validate XML data.

auth.query(authenticator, user, [password])

Queries the named authenticator for information about "user" and, if supplied, checks that "password"
matches the password on record for that user. Authenticators can be configured from the "Catalog >
Authenticators" page of the Administration Server.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 117 of 294

Function Reference

http://www.ivanti.com/company/legal

After looking up the user, this function will return a hash with the following values set:

• "OK" - Set to true if the query was successful. Set to false if the user could not be found, if the
supplied password was incorrect, or if the authenticator encountered a problem.

• "Error" - Set to an error message if the authenticator encountered a problem, for example if it
was unable to contact the authentication server.

Authenticators can be configured to provide information about the supplied user, for example the
groups to which they belong. This information will also be contained in the hash returned by the
auth.query() function.

Sample Usage
Verify the user's password using an LDAP

authenticator called 'ldap'

$auth = auth.query("ldap", $user, $pass);

if($auth['Error']) {

log.error(

"Error with authenticator 'ldap': " .

$auth['Error']

);

connection.discard();

} else if(!$auth['OK']) {

Unauthorised

http.sendResponse("403 Permission Denied",

"text/html", "Incorrect username or password",

""

);

}

Allow through members of the 'admin' group using

the 'group' attribute returned by the authenticator

if($auth['group'] != "admin") {

http.sendResponse("403 Permission Denied",

"text/html",

"You do not have permission to view this page",

""

);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 118 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

connection.bypassProtocolHandling()

This function instructs the connection to cease any protocol-specific processing, and just forward data
between the client and server. If no server has been selected at this point, a load-balancing decision will
still be made as per the pool configuration.

After calling this function the rule will terminate and no further rules will be processed on this
connection. This feature is not supported with HTTP/2. If this function is used on an HTTP/2 stream, it
will instead close the stream with an error indicating that the client should retry using HTTP/1.1.

Sample Usage
$upgrade_header = string.lowercase(

http.getResponseHeader("Upgrade"));

$conn_header = string.lowercase(

http.getResponseHeader("Connection"));

if($upgrade_header == "websocket" &&

$conn_header == "upgrade") {

request.setMaxReplyTime(300);

connection.bypassProtocolHandling();

}

Restrictions

Cannot be used in completion rules.

connection.checkLimits([poolname])

This function checks to see if this connection will be queued due to backend connection or transaction
limits. The function returns 1 if the connection is within configured maximum limits for the named pool (
See the max_connections_pernode and the max_transactions_per_node settings in Pool > Protocol
Settings). The function returns 0 if the connection will exceed the configured maximum limits and
would be queued.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 119 of 294

Function Reference

http://www.ivanti.com/company/legal

If the named pool does not exist, your traffic manager will log a warning message and a value of -1 will
be returned.

Note that even if this function returns 1, another child process may use the last available slot before this
connection is forwarded to a node.

Sample Usage
A connection is queued if it exceeds

max_connections_pernode or

max_transactions_per_node.

Send the client to a low bandwidth overflow pool.

if(!connection.checkLimits("pool")) {

pool.use("hiload_lowbw");

}

Restrictions

Can only be used with TCP-based protocols.

connection.close(Data, [Read])

Writes the provided data directly back to the client. After the data has been sent, the connection is
closed.

Use of connection.close is deprecated for HTTP virtual servers. Use http.sendResponse with
http.disableClientKeepalive instead.

The optional second argument specifies whether data should continue to be read in from the client
after sending this response, and wait for it to close the connection. If set to 0, the connection will close
immediately. If non-zero, the traffic manager will wait and read any remaining data from the connection
before closing it.

The default behaviour is to wait, because some client software will not read a response until it has sent
its entire request.

Sample Usage
Send an instant response and close the connection

connection.close("Server closing connection\n");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 120 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

connection.discard()

For HTTP/2, stops processing the current request, and leaves the TCP connection established. For other
protocols, immediately closes the current connection and stops processing rules. This is equivalent to
the function call 'pool.use("discard")'.

Sample Usage
Drop this connection NOW!

connection.discard();

Restrictions

Cannot be used in completion rules.

connection.getBandwidthClass() - deprecated

This function has been deprecated. Use instead "response.getBandwidthClass()" on page 235.

Returns the current bandwidth class for the connection to the client, or an empty string if no class is set.

connection.getCompletionReasonCode()

Returns a short string code describing the reason a particular transaction completed. A list of the
existing codes is given below.

Code Description

COMPLETE The transaction completed.

DISCARDED_BY_RULE The transaction was ended by a TrafficScript rule.

CONFIG_CHANGED The transaction was purged due to a configuration change.

PARENT_CONNECTION_
ENDED

The transaction was purged as its parent connection ended.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 121 of 294

Function Reference

http://www.ivanti.com/company/legal

Code Description

CONNECT_FAILURE_SERVER Could not establish a connection to the server.

CONNECTION_ERROR There was a problem with the connection.

CONNECTION_CLOSED_
SERVER

The connection was closed by the server.

CONNECTION_CLOSED_
CLIENT

The connection was closed by the client.

TIMEOUT_NODE_QUEUE No node was available to handle the connection.

TIMEOUT_PROCESSING_
RULE

The connection timed out while processing a TrafficScript rule.

TIMEOUT_PROCESSING_
WAX

The connection timed out while optimizing a resource.

TIMEOUT The connection timed out during client/server communication.

TIMEOUT_CONNECT_CLIENT The connection timed out before receiving any data from the client.

TIMEOUT_CONNECT_
SERVER

The connection timed out before receiving any data from the
server.

TIMEOUT_READ_SERVER The connection timed out waiting for the server to send a response.

TIMEOUT_MAXDURATION The total transaction duration was exceeded.

TIMEOUT_SIP_
MAXDURATION

The total SIP transaction duration was exceeded.

TIMEOUT_SIP_REQUEST Timed out waiting for a SIP response.

TIMEOUT_UDP_
NORESPONSE

Timed out waiting for a response from the back-end node.

TIMEOUT_UDP_INACTIVE UDP connection was inactive for too long.

SESSION_PERSISTENCE_
FAILURE

Failed to find an appropriate node for session persistence.

NODE_LOST The connection's back-end node was lost.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 122 of 294

Function Reference

http://www.ivanti.com/company/legal

Code Description

SOCKET_LOST The connection's socket was lost.

READ_FAILURE Failed reading from connection socket.

WRITE_FAILURE Failed writing to connection socket.

BAD_REQUEST Bad or malformed request.

BAD_RESPONSE Bad or malformed response.

SIP_REQUEST_TOO_LARGE The SIP request entity was too large.

INTERNAL_ERROR An unexpected failure occurred.

Sample Usage
$reasonCode = connection.getCompletionReasonCode();

if ($reasonCode != "COMPLETE") {

Erroneous/interrupted transaction.

recentconns.include();

}

connection.getCompletionReasonInfo()

Obtain more detailed information about the reason a particular connection completed. The information
is returned in a hash, with the following keys:

Hash key Details

code The completion reason code (see
connection.getCompletionReasonCode).

message A detailed message describing the reason code.

iserror Contains 1 if the transaction ended due to an error.

isservererror Contains 1 if the transaction ended due to a server error.

isclienterror Contains 1 if the transaction ended due to a client error.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 123 of 294

Function Reference

http://www.ivanti.com/company/legal

Hash key Details

istimeout Contains 1 if the transaction ended because it exceeding any
timeout duration.

isprocessingtimeout Contains 1 if the transaction ended because it exceeded rule or
optimization processing timeouts.

Sample Usage
$info = connection.getCompletionReasonInfo();

if($info['iserror']) {

log.info("Transaction error detected. Code: " .

$info['code'] . " Message: " .

$info['message']

);

}

connection.getData(count) - deprecated

This function has been deprecated. Use instead "request.get([count])" on page 217.

Returns the first 'count' bytes of data provided by the client.

Warning: you can stall a connection by asking it to read more data than the remote client will provide.
Combine this with connection.getDataLen() to reliably read data from a connection.

connection.getDataLen() - deprecated

This function has been deprecated. Use instead "request.getLength()" on page 219.

Returns the number of bytes of data already received from the client. This can be combined with
connection.getData() to reliably read data from a connection without stalling if no data is available.

connection.getLine(offset) - deprecated

This function has been deprecated. Use instead "request.getLine([regex], [offset])" on page 219.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 124 of 294

Function Reference

http://www.ivanti.com/company/legal

Returns a line of input data provided by the client. The line separator is '\n', and this is stripped off
before returning the line. connection.getline() takes a single byte-count argument which indicates
where to start scanning for a line; a value of '0' begins at the start, so returns the first line.

When connection.getline() returns, the variable $1 is updated to point to the start of the next line in the
datastream.

You can iterate through the lines of input data by using $1 as the iterator variable.

Restrictions

Not available when the virtual server's internal protocol is 'generic streaming'.

connection.getLocalIP() - deprecated

This function has been deprecated. Use instead "request.getLocalIP()" on page 220.

Returns the IP address that the client connected to, i.e. the address local to this machine.

connection.getLocalPort() - deprecated

This function has been deprecated. Use instead "request.getLocalPort()" on page 220.

Returns the network port number that the client connected to. (e.g. port 80 is normal for a web server)

connection.getMemoryUsage()

Returns an estimate of the amount of memory currently in use for this connection, in bytes. Memory is
primarily used for buffering data, and the memory usage can be tuned using the various buffer size
settings.

Sample Usage
How much memory are we using?

$memoryusage = connection.getMemoryUsage();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 125 of 294

Function Reference

http://www.ivanti.com/company/legal

connection.getNode()

Returns the name of the back-end node that this request is connected to. If a back-end node has not
been chosen, which is normally the case in request rules, it returns the empty string.

Sample Usage
Which node is used for this connection

$nodename = connection.getNode();

connection.getPersistence()

In a Response rule this function returns the name of the current Session Persistence class used for this
connection, or whatever class has been set by a previous use of connection.setPersistence().

Sample Usage
$class = connection.getPersistence();

connection.getPool()

Returns the name of the pool that this request is connected to. If a pool has not been chosen, it returns
the empty string.

Sample Usage
Where are we connected to?

$poolname = connection.getPool();

connection.getProxyClientIP()

Returns the client IP address if one is contained in a connection PROXY header sent by the client. A
client IP address is contained only in headers of a TCP or UDP type.

Sample Usage
If the request is from a local address

then log it

$c_ip = connection.getProxyClientIP();

$subnet = "192.168.0.0/24";

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 126 of 294

Function Reference

http://www.ivanti.com/company/legal

if (string.ipMaskMatch($c_ip, $subnet)) {

$full_addr = $c_ip . ":" .

connection.getProxyClientPort();

log.info("Request from " . $full_addr);

}

connection.getProxyClientPort()

Returns the client port if one is contained in a connection PROXY header sent by the client. A client port
is contained only in headers of a TCP or UDP type.

Sample Usage
If the request is from a local address

then log it

$c_ip = connection.getProxyClientIP();

$subnet = "192.168.0.0/24";

if (string.ipMaskMatch($c_ip, $subnet)) {

$full_addr = $c_ip . ":" .

connection.getProxyClientPort();

log.info("Request from " . $full_addr);

}

connection.getProxyHeaderType()

Returns the protocol or type of the connection's PROXY header, if available. This is not necessarily the
same as the protocol in use on the connection itself. If PROXY protocol support is enabled, the value
returned will be one of "TCP4", "TCP6", "UDP4", "UDP6", "UNIX STREAM", "UNIX DATAGRAM", "LOCAL"
or "UNKNOWN". If PROXY protocol support is disabled, the empty string will be returned.

Sample Usage
Pick a pool based on the IP version used

by the client

$proxytype = connection.getProxyHeaderType();

if ($proxytype == "TCP6") {

pool.use("IPv6-pool");

} else if ($proxytype == "TCP4") {

pool.use("IPv4-pool");

} else if ($proxytype == "LOCAL") {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 127 of 294

Function Reference

http://www.ivanti.com/company/legal

A health check - end the connection in an

orderly manner, as if an empty page has

been successfully retrieved

http.disableClientKeepalive();

http.sendResponse("200 OK",

"text/plain", "", "");

} else {

Disallow all other client connection types

connection.discard();

}

connection.getProxyServerIP()

Returns the server IP address if one is contained in a connection PROXY header sent by the client. A
server IP address is contained only in headers of a TCP or UDP type.

Sample Usage
Requests sent to a specific address are

directed to one particular node

if (connection.getProxyServerIP() ==

"10.18.73.234" &&

connection.getProxyServerPort() == 80) {

pool.use("mypool", "10.18.73.1", 8080);

}

connection.getProxyServerPort()

Returns the server port if one is contained in a connection PROXY header sent by the client. A server
port is contained only in headers of a TCP or UDP type.

Sample Usage
Requests sent to a specific address are

directed to one particular node

if (connection.getProxyServerIP() ==

"10.18.73.234" &&

connection.getProxyServerPort() == 80) {

pool.use("mypool", "10.18.73.1", 8080);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 128 of 294

Function Reference

http://www.ivanti.com/company/legal

connection.getProxyTLVData(tlv_type)

Returns an array of strings that contain the data from each TLV of the given type that is included in the
PROXY protocol version 2 data sent on the connection, if any. This requires that PROXY protocol
support is enabled and that a valid PROXY protocol version 2 header was received on the connection. If
PROXY protocol support is disabled, no PROXY protocol header was received on the connection, PROXY
protocol version 1 was used for the connection, or no TLV of the given type was included in the PROXY
protocol version 2 header, then an empty list is returned.

Sample Usage
Reject connections with no "AUTHORITY" TLV,

i.e. type 2

$authority = connection.getProxyTLVData(2);

if (array.length($authority) == 0) {

No authority TLV means the connection

is not authorised

connection.discard();

} else if (array.contains($authority,

"badhost.example.com")) {

Also disallow the bad host as the authority

connection.discard();

}

connection.getProxyVersion()

Returns the version number of the PROXY protocol in use on the connection, if available. If PROXY
protocol support is enabled and a PROXY protocol header was sent by the client, the value returned will
be either 1 or 2. If PROXY protocol support is disabled then 0 will be returned.

Sample Usage
Only connections that use PROXY protocol

version 2 are permitted

$proxyversion = connection.getProxyVersion();

if ($proxyversion != 2) {

Either version 1, or no PROXY protocol

header was sent

connection.discard();

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 129 of 294

Function Reference

http://www.ivanti.com/company/legal

connection.getRemoteIP() - deprecated

This function has been deprecated. Use instead "request.getRemoteIP()" on page 221.

Returns the remote IP address of the client.

connection.getRemotePort() - deprecated

This function has been deprecated. Use instead "request.getRemotePort()" on page 221.

Returns the remote port of the client's connection.

connection.getServiceLevelClass()

Returns the current service level class for the connection, or an empty string if no class is set.

Sample Usage
$class = connection.getServiceLevelClass();

connection.getVirtualServer()

Returns the name of the Virtual Server that the rule is running under.

Sample Usage
Are we on the secure site?

if(connection.getVirtualServer() == "secure") {

pool.use("secure");

}

connection.setBandwidthClass(name) - deprecated

This function has been deprecated. Use instead "response.setBandwidthClass(name)" on page 238.

Sets the bandwidth class for the current connection to the client. Providing an empty class name
removes the bandwidth class from the connection. It returns zero if an error occurs (for example, if the
bandwidth class does not exist), and 1 otherwise.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 130 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

connection.setData(request data) - deprecated

This function has been deprecated. Use instead "request.set(request data)" on page 224.

Replaces the input data read from the client with the provided string.

This is a low-level routine that should be used with care. For protocols with their own higher-level
protocol managers (e.g. HTTP), use the higher level routines to alter the input data (e.g. http.setHeader()
and http.setBody()).

Restrictions

Cannot be used in completion rules.

connection.setIdempotent(resend) - deprecated

This function has been deprecated. Use instead "request.setIdempotent(resend)" on page 225.

Marks a request as resendable or non-resendable.

An idempotent request has no detrimental side effects, so it can safely be attempted multiple times. A
non-idempotent request has a side effect - for example, it may update a database, or initiate a
purchase.

By default, all non-HTTP requests are marked as idempotent. If a back-end node fails to generate a
correct response when a request is initially forwarded to it, your traffic manager will attempt to resend
the request to another node.

connection.setIdempotent() can override this behaviour. If 'resend' is zero, this indicates that the
request should only be attempted against one back-end node.

If 'resend' has a non-zero value, this indicates that if a request is made to a back-end node and a correct
response is not received, your traffic manager should retry the request against another back-end node.

Note that a request cannot be resent once it has begun streaming data between the client and the
node. Additionally, UDP connections cannot be marked as resendable (the UDP client application
should handle failed UDP responses).

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 131 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

connection.setPersistence(name)

Sets the Session Persistence class that will be used for the connection. This is used to override the
default Session Persistence class that will be used once a Pool is selected.

If no parameter is given then the current Session Persistence class will be removed and the Pool's
default session persistence class will be used for this connection.

Sample Usage
connection.setPersistence("sales");

Restrictions

Cannot be used in completion rules.

connection.setPersistenceKey(value)

Sets the value of the Session Persistence key that is used by a Universal Session Persistence type class.

Setting the value to the empty string will remove any persistence key from the connection.

A Session Persistence class that uses Universal Session Persistence attempts to ensure that every
connection that provides the same key is directed to the same back-end node.

This function has no effect if a different type of session persistence class is ultimately used.

Sample Usage
$value = http.getHeader("User-Agent") .

request.getRemoteIP();

connection.setPersistenceKey($value);

connection.setPersistence("my persistence class");

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 132 of 294

Function Reference

http://www.ivanti.com/company/legal

connection.setPersistenceNode(value)

Sets the back-end node to be used by a NamedNode Persistence class.

A Session Persistence class that uses NamedNode Persistence will then ensure that this node will be
used for the request. The node must be valid and exist in the Pool being used. If no port number is
given, or if the port number is not valid, then if there is a node with a matching name, it will be used. For
example, if the node 'web:80' is specified, but there is only a 'web:443', then that node will be used
instead. This is to help share session persistence between different services on the same machine.

This function has no effect if a different type of session persistence class is ultimately used.

Sample Usage
Use the node 'web:80' for this request

connection.setPersistenceNode("web:80");

Restrictions

Cannot be used in completion rules.

connection.setServiceLevelClass(level)

Sets the service level class for the current connection. It returns zero if an error occurs (for example, if
the service level class does not exist), and 1 otherwise

Sample Usage
connection.setServiceLevelClass("gold");

Restrictions

Cannot be used in completion rules.

connection.sleep(milliseconds)

Pauses processing of the current connection for the specified number of milliseconds. This can be used
to rate-limit particular clients; for example, those asking for particular files, or from particular locations,
or using particular user-agents.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 133 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Pause this connection for 2 seconds

connection.sleep(2000);

Restrictions

Cannot be used in completion rules.

connection.data.get(key)

Returns the value that was previously stored with the given key using connection.data.set() in the
current connection, or returns the empty string if no data was stored.

Sample Usage
Track the state of this connection so that we

can process the response correctly

$req = request.get(5);

if(string.startsWith($req, "LOGIN")) {

connection.data.set("state", "login");

} else {

connection.data.set("state", "");

}

...

in the response, ...

$state = connection.data.get("state");

connection.data.set(key, value)

Stores a value for this connection, associating it with the provided key. The value can be retrieved later
when processing the same connection, using connection.data.get(). Once the connection finishes, the
value cannot be retrieved.

Sample Usage
Track the state of this connection so that we

can process the response correctly

$req = request.get(5);

if(string.startsWith($req, "LOGIN")) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 134 of 294

Function Reference

http://www.ivanti.com/company/legal

connection.data.set("state", "login");

} else {

connection.data.set("state", "");

}

...

in the response, ...

$state = connection.data.get("state");

Restrictions

Cannot be used in completion rules.

counter.increment(counter, [amount])

Increments the numbered counter. These counters are readable via SNMP, and can be graphed on the
Current Activity page on the Administration Server.

By default, the counter is incremented by one, but you can also supply an amount to increment the
counter by. If a negative amount is supplied the counter is decremented, but please keep in mind that a
decrement is indiscernible from a wrap-around.

Sample Usage
Increment the first user counter by 100

counter.increment(1, 100);

Increment the first user counter by 1

counter.increment(1);

counter64.increment(counter, [amount])

Increments the numbered 64 bit counter. These counters are readable via SNMP, and can be graphed
on the Current Activity page on the Administration Server. 64 bit counters exist in a separate name- and
storage space from the 32 bit counters, i.e. they don't overlap in any way.

By default, the counter is incremented by one, but you can also supply an amount to increment the
counter by. If a negative amount is supplied the counter is decremented, but please keep in mind that a
decrement is indiscernible from a wrap-around. Also please note that the supplied increment amount is
limited to signed 32 bit range even though the counter is 64 bit.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 135 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Increment the first 64 bit user counter by 100

counter64.increment(1, 100);

Increment the first 64 bit user counter by 1

counter64.increment(1);

data.get(key)

Returns the value that was previously stored with the given key using data.set(), or returns the empty
string if no data was stored.

Values stored in this way are persistent; a value stored in one rule can later be retrieved by a different
rule handling a different connection. Thus, a rule can maintain persistent state across connections.

Sample Usage
data.set("count", 7);

In another rule or connection...

$value = data.get("count"); # Returns 7

data.getMemoryFree()

Returns the amount of free space, in bytes, available for storing information with data.set().

If memory space is low, then data.reset() can be used to clear some or all of the entries from the
storage. Alternatively, the upper limit on memory can be configured using trafficscript!data_size on the
Global Settings page.

Sample Usage
If running low on storage, clear some temporary

data that other rules have stored.

$bytes = data.getMemoryFree();

if($bytes < 1024) {

data.reset("temp-");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 136 of 294

Function Reference

http://www.ivanti.com/company/legal

data.getMemoryUsage()

Returns an estimate of the amount of memory, in bytes, used by entries that have been stored by
data.set().

This can be used to verify if a rule is storing excessive amounts of data, starving the host machine of
memory.

Sample Usage
$bytes = data.getMemoryUsage();

data.remove(key)

Removes the value that was previously associated with the given key using data.set().

data.remove() returns 1 if the item did exist, or 0 if it was not found.

Sample Usage
data.set("cache-$url", $obj);

In another rule or connection...

data.remove("cache-$url");

data.reset([prefix])

Removes some or all of the mappings created by data.set(). With no arguments, it removes all keys.
With a single argument, it removes all keys that begin with the supplied string.

NOTE: Should you intend to delete a specific individual key, data.remove() is more suited to this task. It
offers greater performance and also ensures there is no risk of accidentally deleting other keys that start
with the same string.

Sample Usage
Free some memory if we've used too much

if(data.getMemoryUsage() > 102400) {

data.reset("mappings-");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 137 of 294

Function Reference

http://www.ivanti.com/company/legal

data.set(key, value)

Stores a value, associating it with the provided key. The value can be retrieved later using data.get(),
even from a different rule or connection.

The value will be stored as a string, implicit conversion of floating point numbers to strings can cause
some precision loss. You can convert a floating point number into a string with no precision loss using
'string.sprintf("%f", $val)'. Arrays and hashes are serialised before storing and will be deserialised into
their original form when retrieved with data.get().

To prevent memory problems, there is an upper limit on the amount of data that can be stored in the
TrafficScript data storage. This means that the data.set() may fail. The upper limit can be configured
using trafficscript!data_size on the Global Settings page.

data.set() returns true if the entry was stored, or false if there was no room.

Sample Usage
Associate $value with $key for future retrieval

data.set($key, $value);

Run this code only once:

if(!data.get("runonce")) {

Do initialization

...

data.set("runonce", 1);

}

data.local.get(key)

Returns the value that was previously stored with the given key using data.local.set(), or returns the
empty string if no data was stored.

Values stored in this way are persistent; a value stored in one rule can later be retrieved by a different
rule handling a different connection as long as it is handled by the same child process. Thus, a rule can
maintain persistent state across connections. The value can be different or non-existent on another
child process.

data.local.get() and data.local.set() are useful for caching data where coherence is not required.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 138 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
data.local.set("count", 7);

In another rule or connection handled

by the same child process ...

$value = data.local.get("count"); # Returns 7

data.local.getMemoryFree()

Returns the amount of free space, in bytes, available for storing information with data.local.set().

If memory space is low, then data.local.reset() can be used to clear some or all of the entries from the
storage. Alternatively, the upper limit on memory can be configured using trafficscript!data_local_size
on the Global Settings page.

Sample Usage
If running low on storage, clear some temporary

data that other rules have stored.

$bytes = data.local.getMemoryFree();

if($bytes < 1024) {

data.local.reset("temp-");

}

data.local.getMemoryUsage()

Returns an estimate of the amount of memory, in bytes, used by entries that have been stored by
data.local.set().

This can be used to verify if a rule is storing excessive amounts of data, starving the host machine of
memory.

Sample Usage
$bytes = data.local.getMemoryUsage();

data.local.remove(key)

Removes the value that was previously associated with the given key using data.local.set().

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 139 of 294

Function Reference

http://www.ivanti.com/company/legal

data.local.remove() returns 1 if the item did exist, or 0 if it was not found.

Sample Usage
data.local.set("cache-$url", $obj);

In another rule or connection...

data.local.remove("cache-$url");

data.local.reset([prefix])

Removes some or all of the mappings created by data.local.set(). With no arguments, it removes all
keys. With a single argument, it removes all keys that begin with the supplied string.

NOTE: Should you intend to delete a specific individual key, data.local.remove() is more suited to this
task. It offers greater performance and also ensures there is no risk of accidentally deleting other keys
that start with the same string.

Sample Usage
Free some memory if we've used too much

if(data.local.getMemoryUsage() > 102400) {

data.local.reset("mappings-");

}

data.local.set(key, value)

Stores a value, associating it with the provided key. The value can be retrieved later using data.local.get
(), even from a different rule or connection processed by the same child process.

The value will be stored as a string, implicit conversion of floating point numbers to strings can cause
some precision loss. You can convert a floating point number into a string with no precision loss using
'string.sprintf("%f", $val)'. Arrays and hashes are serialised before storing and will be deserialised into
their original form when retrieved with data.local.get().

To prevent memory problems, there is an upper limit on the amount of data that can be stored in the
local TrafficScript data storage. This means that the data.local.set() may fail. The upper limit can be
configured using trafficscript!data_local_size on the Global Settings page.

data.local.set() returns true if the entry was stored, or false if there was no room.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 140 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Associate $value with $key for future retrieval

data.local.set($key, $value);

Run this code only once:

if(!data.local.get("runonce")) {

Do initialization

...

data.local.set("runonce", 1);

}

event.emit(custom event name, message)

Triggers a Custom Event identified by the 'custom event name'. Actions can be associated with the
Custom Event by configuring an Event Type to contain a Custom Event with the specified 'custom event
name', and then associating that Event Type with an Action.

The 'custom event name' cannot contain '/' or control codes.

In addition to custom actions, a log message will be produced containing the eventid and the message.

Sample Usage
Emit a debug statement.

event.emit("debug1", "Some debug information");

geo.getCity(ip)

Returns the city of the supplied IP address, or the empty string.

Sample Usage
Get this IP's city, such as Santa Clara

$city = geo.getCity("216.250.81.96");

geo.getCountry(ip)

Returns the country name of the supplied IP address, or the empty string.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 141 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Get this IP's country, such as United States

$country = geo.getCountry("216.250.81.96");

geo.getCountryCode(ip)

Returns the two-character country code of the supplied IP address, or the empty string.

Sample Usage
Get this IP's country code, such as US

$countryCode = geo.getCountryCode("216.250.81.96");

geo.getDistanceKM(lat1, lon1, lat2, lon2)

Returns the distance in kilometres between two points on the earth's surface (identified by latitude and
longitude), or -1 on error.

Sample Usage
Get the distance between two lat-long points in km

$d = geo.getDistanceKM("52.2338", "0.1529",

"37.4062", "-121.9765");

geo.getDistanceMiles(lat1, lon1, lat2, lon2)

Returns the distance in miles between two points on the earth's surface (identified by latitude and
longitude), or -1 on error.

Sample Usage
Get the miles between two lat-long points

$d = geo.getDistanceMiles("52.2338", "0.1529",

"37.4062", "-121.9765");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 142 of 294

Function Reference

http://www.ivanti.com/company/legal

geo.getIPDistanceKM(ip1, ip2)

Returns the distance in kilometres between the locations of two IP addresses. It will return -1 unless
both locations can be found.

Sample Usage
Get the distance between two IPs in kilometres

$d = geo.getIPDistanceKM("11.12.13.14",

"25.26.27.28");

geo.getIPDistanceMiles(ip1, ip2)

Returns the distance in miles between the locations of two IP addresses. It will return -1 unless both
locations can be found.

Sample Usage
Get the distance between two IPs in miles

$d = geo.getIPDistanceMiles("1.2.3.4", "5.6.7.8");

geo.getLatitude(ip)

Returns the decimal latitude of the supplied IP address, or the empty string if the location is unknown.
This may be accurate to city, region or only country level: to find out, check whether geo.getCity() and
geo.getRegion() return empty strings.

Sample Usage
Get this IP's decimal latitude (positive = north),

such as 37.3961

$lat = geo.getLatitude("216.250.81.96");

geo.getLocation()

Returns the name of the location in which this traffic manager is based.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 143 of 294

Function Reference

http://www.ivanti.com/company/legal

Note that traffic managers can be assigned to locations only when vTM Multi-Site Cluster Management
is enabled. The following geo.* TrafficScript functions require the installation of a GeoIP database in
order to produce a result: geo.getCountry geo.getCountryCode geo.getRegion geo.getRegionCode
geo.getCity get.getTimezone geo.getLatitude geo.getLongitude This must be installed separately and
kept up-to-date for both IPv4 and IPv6 addresses to resolve to location names and latitude/longitude
answers. See the User Guide section "Global Load Balancing" for instructions on installing the GeoIP
database.

Sample Usage
Run this part of the rule if the request was

sent to a traffic manager located in Cambridge

if(geo.getLocation() == "Cambridge") {

...

}

geo.getLocationLonLat()

Returns a hash containing the longitude and latitude of the location to which this request was sent.

Note that traffic managers can be assigned to locations only when vTM Multi-Site Cluster Management
is enabled and locations can be assigned a latitude and longitude only when using the Global Load
Balancing feature.

Sample Usage
How for away from the traffic manager did this

request originate from?

$loc = geo.getLocationLonLat();

$ip = request.getRemoteIP();

$reqlon = geo.getLongitude($ip);

$reqlat = geo.getLatitude($ip);

$reqloc = geo.getCountry($ip);

log.info("Request was sent from " .

$reqloc . ", " .

geo.getDistanceMiles($loc["latitude"],

$loc["longitude"],

$reqlat, $reqlon) .

" miles away from here");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 144 of 294

Function Reference

http://www.ivanti.com/company/legal

geo.getLongitude(ip)

Returns the decimal longitude of the supplied IP address, or the empty string if the location is unknown.
This may be accurate to city, region or only country level: to find out, check whether geo.getCity() and
geo.getRegion() return empty strings.

Sample Usage
Get this IP's decimal longitude (positive = east),

such as -121.962

$long = geo.getLongitude("216.250.81.96");

geo.getRegion(ip)

Returns the region (e.g. US state) of the supplied IP address, or the empty string if the location is
unknown or doesn't have a region.

Sample Usage
Get this IP's region, such as California

$state = geo.getRegion("216.250.81.96");

geo.getRegionCode(ip)

Returns the region code (e.g. US state abbreviation) of the supplied IP address, or the empty string. The
code for a given region may differ between software versions.

Sample Usage
Get this IP's region code, such as CA

$stateCode = geo.getRegionCode("64.69.78.223");

geo.getTimezone(ip)

Returns the timezone of the supplied IP address, or the empty string.

Sample Usage
The timezone the IP is in, eg America/Los_Angeles

$tz = geo.getTimezone("12.69.84.172");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 145 of 294

Function Reference

http://www.ivanti.com/company/legal

glb.getDomain()

Get the domain currently being processed.

This function can only be used in GLB service rules.

Sample Usage
Disable balancing of the example.com domain

if the client is in Boston, USA

$domain = glb.getDomain();

$ip = request.getRemoteIP();

if($domain == "example.com"

&& geo.getCity($ip) == "Boston"

&& geo.getCountryCode($ip) == "US") {

glb.service.skip();

}

glb.getIPs()

Get an array of the IPs associated with the domain currently being processed.

This function can only be used in GLB service rules.

Sample Usage
Log the IPs that were returned by the DNS server

for the domain test.example.com

if(glb.getDomain() == "test.example.com") {

$msg = "IPs returned to " . request.getRemoteIP()

. " for domain test.example.com were: "

. array.join(glb.getIPs(), ", ");

log.info($msg);

}

glb.service.avoidLocation(location)

Avoid the specified location when re-writing the DNS response for the current domain.

The effect of this is to narrow down the list of available locations to just those that are not avoided.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 146 of 294

Function Reference

http://www.ivanti.com/company/legal

If a location is both preferred and avoided being preferred will take precedence. If all locations are
avoided (and none preferred) the outcome of the balancing algorithm will be as if no preferences have
been specified.

If the location is unknown, unconfigured, or dead this preference will have no effect on the balancing
decision. (In these cases a warning event will be raised and logged.)

This function can only be used in GLB service rules.

Sample Usage
Do not use the UK between 01:00 and 03:00 GMT if

possible to use another location

if(sys.gmtime.format('%H') >= 1

&& sys.gmtime.format('%H') < 3) {

glb.service.avoidLocation('United Kingdom');

}

Restrictions

Cannot be used in completion rules.

glb.service.getLocationLoad(location, [service])

Get the load of the specified location for the specified service, or for the current service if no service is
specified and the function is used in a GLB service rule.

If the location does not exist, or is not configured for the specified service, the function will return -1
and will print a warning to the event log.

A service must be specified if this function is used outside a GLB service rule.

Sample Usage
Build a list of load -> location mappings

$locs = glb.service.listLocations();

$loads = [];

foreach($loc in $locs) {

$l = glb.service.getLocationLoad($loc);

$loads[$l] = $loc;

}

Ignore the highest location load

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 147 of 294

Function Reference

http://www.ivanti.com/company/legal

$highest = array.sortNumerical(

hash.keys($loads), 1)[0];

glb.service.ignoreLocation($loads[$highest]);

glb.service.getLocationWeight(location, [service])

Get the weight of the specified location, as configured for the Weighted Random load balancing
algorithm for the specified service, or for the current service if no service is specified and the function is
used in a GLB service rule.

If the service is not using the Weighted Random load balancing algorithm then the weight for all
locations will be reported as 0.

If the location does not exist, or is not configured for the specified service, the function will return -1
and will print a warning to the event log.

A service must be specified if this function is used outside a GLB service rule.

Sample Usage
If debugging, never use the lowest weighted node

- instead, keep it free for testing purposes

if($debugging) {

Build a list of weight -> location mappings

$locs = glb.service.listLocations();

$weights = [];

foreach($loc in $locs) {

$w = glb.service.getLocationWeight($loc);

$weights[$w] = $loc;

}

Ignore the lowest weighted location

$lowest = array.sortNumerical(

hash.keys($weights)

)[0];

glb.service.ignoreLocation($weights[$lowest]);

}

glb.service.getName()

Get the name of the current GLB service configuration.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 148 of 294

Function Reference

http://www.ivanti.com/company/legal

This is the service that has been picked to handle the current domain. It is this service that will have
specified that the rule be executed.

This function can only be used in GLB service rules.

Sample Usage
Disable the service named MyService on Sundays

$name = glb.service.getName();

if($name == "MyService"

&& sys.time.weekday() == 1) {

glb.service.skip();

}

glb.service.getNearestLocation()

Get the name of the traffic manager location calculated to be the closest to geographic location the
client IP. Note that only live traffic manager locations are considered in this calculation.

If no nearest traffic manager location could be calculated the empty string is returned.

This function can only be used in GLB service rules. An up-to-date GeoIP database must be installed
separately for this TrafficScript function to return meaningful data. See the User Guide section "Global
Load Balancing" for instructions on installing the GeoIP database.

Sample Usage
Log the traffic manager location that is closest

to the client

$nearest = glb.service.getNearestLocation();

log.info("Location nearest to " .

request.getRemoteIP() . " is " . $nearest);

glb.service.ignoreLocation(location)

Do not consider the specified location when re-writing the DNS response for the current domain.

This removes the specified location from the list of available locations.

Multiple locations can be ignored, if all available locations are ignored it will be as if all locations are
dead. Ignoring locations takes precedence over preferring locations.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 149 of 294

Function Reference

http://www.ivanti.com/company/legal

If the location is unknown, unconfigured, or dead this preference will have no effect on the balancing
decision. (In these cases a warning event will be raised and logged.)

This function can only be used in GLB service rules.

Sample Usage
Never use the UK between 01:00 and 03:00 GMT

if(sys.gmtime.format('%H') >= 1

&& sys.gmtime.format('%H') < 3) {

glb.service.ignoreLocation('United Kingdom');

}

Restrictions

Cannot be used in completion rules.

glb.service.isLocationLive(location, [service])

Check if a location is live. A non-live location includes those for which monitors have failed, or those
that are in the "draining" list for the specified service, or for the current service if no service is specified
and the function is used in a GLB service rule.

The function returns 1 if the location is live, 0 if it isn't, and -1 if the location does not exist or is not
configured for the current service.

A service must be specified if this function is used outside a GLB service rule.

Sample Usage
Log warning if first location is dead

$locs = glb.service.listLocations();

$status = glb.service.isLocationLive($locs[0]);

if($status == 0) {

log.warn("Location " . $locs[0] . " is dead.");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 150 of 294

Function Reference

http://www.ivanti.com/company/legal

glb.service.listDomains([service])

Get an array of the domains the specified GLB service is configured to handle, or the domains that the
current GLB service is configured to handle if no service is specified.

This function can only be used in GLB service rules unless the service parameter is specified.

Sample Usage
Log the domains the current GLB service is

configured to handle.

$domains = glb.service.listDomains();

log.info("Configured domains: " .

array.join($domains, ", "));

glb.service.listLocations([service])

Get a priority-ordered array of the locations configured for the specified GLB service, or the current GLB
service if none is specified. This is the value of the "location_order" config key.

This function can only be used in GLB service rules unless the service parameter is specified.

Sample Usage
Apply a custom global load-balancing algorithm

without accessing a back-end DNS server, but

using stored configuration on the traffic manager.

Rule is used on a standard DNS virtual server.

$locations = glb.service.listLocations("Gallery");

foreach($loc in $locations) {

if(glb.service.isLocationLive(

$loc, "Gallery")) {

Return DNS response with IP of location

}

}

Return DNS response to fallback IP - all locations

are down

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 151 of 294

Function Reference

http://www.ivanti.com/company/legal

glb.service.preferLocation(location)

Prefer the specified location when re-writing the DNS response for the current domain. More than one
location may be preferred by calling this function multiple times.

The effect of this is to narrow down the list of available locations to just those that have been selected
as preferred. However, if no preferred locations are available balancing will fall back to other available
locations.

If a location is both preferred and avoided being preferred will take precedence. If all locations are
preferred the outcome of the balancing algorithm will be as if no preferences have been specified.

If the location is unknown, unconfigured, or dead this preference will have no effect on the balancing
decision. (In these cases a warning event will be raised and logged.)

This function can only be used in GLB service rules.

Sample Usage
Prefer to use Australia between 01:00 and 03:00 GMT

But if it isn't available fall back to balancing

if(sys.gmtime.format('%H') >= 1

&& sys.gmtime.format('%H') < 3) {

glb.service.preferLocation('Australia');

}

Restrictions

Cannot be used in completion rules.

glb.service.skip()

Skip the current service configuration. This means that no futher service rules will be executed and no
balancing will occur for the domain currently being processed. The DNS records for the domain will be
sent to the client unchanged. (Further A-record domains in the current DNS response may still be
processed.)

The glb.service.skip() call does not return.

This function can only be used in GLB service rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 152 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Do not balance requests from the local network

$ip = request.getRemoteIP();

if(string.IPMaskMatch($ip, "10.0.0.0/16")) {

glb.service.skip();

}

Restrictions

Cannot be used in completion rules.

glb.service.useLocation(location)

Force use of the specified location when re-writing the DNS response for the current domain.

If the location has IPs configured for the current service that match IPs returned in the DNS response for
the current domain the response will be re-written to use only the IPs configured for the location.

If the location is unknown, unconfigured, or dead this preference will have no effect on the balancing
decision. (In these cases a warning event will be raised and logged.)

This function can only be used in GLB service rules.

Sample Usage
Force use of Australia between 01:00 and 03:00 GMT

if(sys.gmtime.format('%H') >= 1

&& sys.gmtime.format('%H') < 3) {

glb.service.useLocation('Australia');

}

Restrictions

Cannot be used in completion rules.

http.addHeader(name, value)

Modifies the current HTTP request, adding an HTTP header with the supplied value. A case-insensitive
lookup is first performed in order to find any existing headers. If a match is found, a duplicate header
will be added to the message along with the new value.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 153 of 294

Function Reference

http://www.ivanti.com/company/legal

If an invalid header name is specified, the function will print a warning and return without modifying the
HTTP request.

Sample Usage
Add a host header if it is missing

if(!http.headerExists("Host")) {

http.addHeader("Host", "unknown");

}

http.addResponseHeader(name, value)

Adds an HTTP header to the HTTP response that will be sent back to the client. If the header already
exists in the response, then this value will be appended to the existing value. The header lookup is case-
insensitive.

If an invalid header name is specified, the function will print a warning and return without modifying the
HTTP response.

Sample Usage
Set a cookie to remember this user

http.addResponseHeader("Set-Cookie",

"id=12345678; path=/");

http.changeSite(name)

Redirect users to a new website. It is a more sophisticated version of http.redirect() that will preserve the
original path that the request asked for. Note that it sends back a HTTP 301 redirect rather than the 302
response returned by http.redirect(). For instance, if the original request was for
"http://www.example.com/image/image.jpg", then http.changeSite("example.co.uk") would redirect
the user to "http://example.co.uk/image/image.jpg"

The redirection will preserve the original path (and any query string) of the request, together with the
port number and protocol. If you wish to force any of these details, then you can specify them as part of
the supplied host name. e.g. http.changeSite("https://www.example.com") will always send people to a
SSL-encrypted site.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 154 of 294

Function Reference

http://www.ivanti.com/company/legal

You can also add on a prefix to the path of the URL, e.g. http.changeSite("www.example.com/oldsite")
would redirect a request for "http://www.example.com/missing/page.html" to
"http://www.example.com/oldsite/missing/page.html".

If the original request matches the supplied redirection, then http.changeSite() will take no action and
let the request continue. This ensures that no 'redirection loops' occur.

Sample Usage
Send users to our new site

if(http.getHostHeader() == "www.zeus.com") {

http.changeSite("www.example.com");

}

Restrictions

Cannot be used in completion rules.

http.cookie(name) - deprecated

This function has been deprecated. Use instead "http.getCookie(name)" on page 158.

Returns the value of the named cookie.

http.disableClientKeepalive()

Overrides the 'keepalive' setting on the virtual server for the current request by adding a 'Connection:
close' header to the response.

Sample Usage
Refuse permission and ensure that the connection

will not be kept alive.

http.disableClientKeepalive();

http.sendResponse("403 Permission Denied",

"text/html", "Go away",

"");

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 155 of 294

Function Reference

http://www.ivanti.com/company/legal

http.doesFormParamExist(Parameter)

Checks whether a form parameter is present, either in the URL query string, or if not found and the
request is a POST, from the POST body data. It returns 1 if the parameter is present, and 0 if not.

This is useful when there are form parameters with no value, e.g a query string like 'foo=bar&stuff&x=y'
- the 'stuff' parameter has no value, but is present.

Sample Usage
Did the user ask for fries with that?

if(http.doesFormParamExist("fries")) {

Do something

}

http.getBody([count])

Returns the body data of the request. HTTP clients use the body data for sending file uploads or for
HTML form parameters.

If the optional 'count' parameter is supplied, http.getBody() will only read and return this number of
bytes. If count is 0, http.getBody() returns the entire request.

If the request has no body, then this returns an empty string.

http.getBody() will work in a response rule only if the entire request was read before the request rules
completed (for example, if another call to http.getBody() was made in a request rule). Otherwise,
request data will have been streamed to the server and not cached. If the request data is not available,
this function will return the empty string.

This function is not usable in response rules, as the body data of the request will no longer be
accessible.

To read HTML form parameters, it is easier to use http.getFormParam() as that will work for GET and
POST requests.

Sample Usage
Read the entire request body

$body = http.getBody();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 156 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

http.getBodyLines([count])

Splits the body data of the HTTP request into individual lines and returns an array of the data.

If the optional 'count' parameter is supplied, http.getBodyLines() will only read and return this number
of bytes. If count is 0, http.getBodyLines() returns the entire request.

If the request has no body, then this returns an empty array. This function is not usable in response
rules, as the body data of the request will no longer be accessible.

To read HTML form parameters, it is easier to use http.getFormParams() as that will work for GET and
POST requests.

Sample Usage
Read the entire request body

$body = http.getBodyLines();

If the body data is some special format we can

understand then we can process it line-by-line

if(array.length($body) > 0) {

if(array.shift($body) == "Special data") {

foreach($line in $body) {

handle special body data lines

}

}

}

Restrictions

Cannot be used in completion rules.

http.getClientVersion()

Returns the HTTP version in use by the client.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 157 of 294

Function Reference

http://www.ivanti.com/company/legal

This function differs from http.getVersion() in that it returns the version of the HTTP request sent by the
client, rather than that of the HTTP request the traffic manager will send to the back-end server.

As an example, if the client is using HTTP/2 but the traffic manager has converted the request to
HTTP/1.1 before processing it, http.getClientVersion() will return "HTTP/2" whereas http.getVersion()
will return "HTTP/1.1".

Sample Usage
if (http.getClientVersion() == "HTTP/2") {

log.info("HTTP/2 request detected.");

recentconns.include();

}

http.getCookie(name)

Returns the named cookie in the incoming HTTP request.

http.getCookie is a helper method that makes it easier to parse the HTTP Cookie header and extract the
values of that particular cookie, rather than using http.getHeader() directly.

An HTTP 'Cookie' header can have multiple values, such as

Cookie: user-id=Joe; user-type=gold

http.getCookie(...) will retrieve the 'Cookie' header line and parse it, returning the value of the cookie. If
the cookie does not exist, http.getCookie() will return the empty string.

Sample Usage
Get the PHP session cookie

$cookie = http.getCookie("PHPSESSIONID");

http.getCookies()

Returns a hash containing the names of all the cookies in this request mapped to their values.

An HTTP 'Cookie' header can have multiple values, such as

Cookie: user-id=Joe; user-type=gold

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 158 of 294

Function Reference

http://www.ivanti.com/company/legal

http.getCookies() will retrieve the 'Cookie' header line and parse it, returning a hash mapping all the
cookie names to their values.

Sample Usage
List all of the cookie names and their values

$cookies = http.getCookies();

foreach($cookie in hash.keys($cookies)) {

log.info($cookie . ": " . $cookies[$cookie]);

}

http.getFormParam(Parameter, [Separator])

Returns the %-decoded form parameter from the URL query string, or if not found and the request is a
POST, from the POST body data.

If the parameter is provided twice, only the first will be returned, unless the optional separator is
provided, in which case all matches will be returned, separated with this string.

Sample Usage
See what drink the user wanted

$drink = http.getFormParam("drink");

http.getFormParamNames(Separator) - deprecated

This function has been deprecated. Use instead "http.listFormParamNames()" on page 169.

Returns a list containing the names of all the form parameters present in the URL query string and, if the
request is a POST, in the POST body data. The names are returned as a single string, separated by the
string supplied to this function. If the same parameter appears multiple times in the request, it will only
appear once in the list returned by this function.

http.getFormParams()

Returns a hash mapping the names of all the form parameters present in the URL query string and, if
the request is a POST, in the POST body data to their values. If the same parameter appears multiple
times in the request then it will be mapped to an array of values in the hash that is returned by this
function.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 159 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Log all of the form parameters and values

$params = http.getFormParams();

foreach($param in hash.keys($params)) {

$values = $params[$param];

if(lang.isArray($values)) {

log.info($param . "=" .

array.join($values, ", ")

);

} else {

log.info($param . "=" . $values);

}

}

http.getHeader(name)

Returns the value of a named HTTP header in the HTTP request, or the empty string if the header does
not exist or has an empty value. The lookup is case-insensitive.

Sample Usage
Get the browser name and version

$browser = http.getHeader("User-Agent");

this returns the same value

$browser = http.getHeader("user-agent");

http.getHeaderNames() - deprecated

This function has been deprecated. Use instead "http.listHeaderNames()" on page 169.

Returns a list of all the headers that are present in the request.

The headers are returned as a single string, separated by spaces.

http.getHeaders()

Returns a hash containing all the header names in the request mapped to their values.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 160 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Show all the headers in the request

$headers = http.getHeaders();

foreach($header in hash.keys($headers)) {

log.info($header . "=" . $headers[$header]);

}

http.getHostHeader()

Returns the HTTP Host header. This value is lowercased and has the port removed. Any trailing full stop
is also removed. For example if the Host header is 'www.Example.com:80' then http.getHostHeader()
returns 'www.example.com'.

Sample Usage
Get the unambiguous Host header

$hostheader = http.getHostHeader();

http.getMethod()

Returns the HTTP method that was used to make the request, such as GET or POST.

Sample Usage
Was this an HTTP POST?

if(http.getMethod() == "POST") {

handle POST request ...

}

http.getMultipartAttachment(part)

Returns the specified data out of a multipart encoded HTTP request. The data contained in the part is
returned on success, or "" if it doesn't exist for that part. $1 contains the Content Type of the part, and
$2 contains the complete headers for that part.

Sample Usage
$count = 0;

while($data =

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 161 of 294

Function Reference

http://www.ivanti.com/company/legal

http.getMultipartAttachment($count)) {

log.info("Data was " . $data);

log.info("Content-Type was " . $1);

log.info("Headers were " . $2);

$count = $count + 1;

}

http.getPath()

Returns the %-decoded path in the HTTP request URL, stripping the query string if one was provided. If
there is a leading scheme and authority prefix, this is removed as well, so the URL
"http://www.example.com/content?page=44" will be returned as "/content". If a %-encoded value is
found, which isn't valid hexadecimal (for example, %G), this isn't converted or removed, but instead the
'%' character is replaced by a '_' character, since malformed %-encoded values could be used as part of
a malicious attack to fool security checks against particular URLs.

Sample Usage
Retrieve the path

$path = http.getPath();

http.getQueryString()

Returns the %-decoded query string in the URL, or the empty string if no query string was provided.

Sample Usage
Was there a query string?

$qs = http.getQueryString();

if($qs) {

Handle query string ...

}

http.getRawQueryString()

Returns the raw (non %-decoded) query string in the URL, or the empty string if no query string was
provided.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 162 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Was there a query string?

$qs = http.getRawQueryString();

if($qs) {

Handle query string ...

}

http.getRawURL()

Returns the raw (non-decoded) URL data provided by the client in the first line of the HTTP request,
after the method and before the HTTP version specifier.

The raw URL data includes both the path and query string if supplied and is not decoded. It may also
contain the protocol and hostname if the client sent them. It could contain %-escaped characters that
can be used to disguise the contents of the URL. Use http.getPath() or http.getQueryString() to return
the %-decoded version of the path or query string.

This function could return raw urls of various forms including:

• http://www.example.com/file.html

• /file.html

• /path/../file.html

• /file.html?querystring

• /file.html?qs%encoded

You can use http.normalizePath() on the path component to remove any '/../' or '/./' references.

In general it is better to use http.getPath() and http.getQueryString() to avoid the need to process the
raw url.

Sample Usage
$rawurl = http.getRawURL();

if(string.contains($rawurl, "%00")) {

Something suspicious here ...

connection.discard();

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 163 of 294

Function Reference

http://www.ivanti.com/company/legal

http.getRequest()

Returns the full HTTP request and headers, but does not include any body data.

Sample Usage
Check that the request is not too big

for our servers

$request = http.getRequest();

if(string.len($request) > 2048) {

http.sendResponse("413 Request too large",

"text/plain",

"Request too large", "");

}

http.getResponse()

Returns the beginning of the HTTP response (the status line and the headers), up to but not including
the empty line that separates the headers from the body. The returned string does not include any body
data.

Sample Usage
See if the response included any

headers that start with 'Foo'

$response = http.getResponse();

if(string.regexMatch($response, "^Foo")) {

log.info("A 'Foo' header was found");

}

http.getResponseBody([count])

Returns the body of the HTTP response.

If the response has chunked transfer encoding this function will return the de-chunked body. Similarly if
the response is gzip or deflate compressed the body will be returned uncompressed.

If the optional 'count' parameter is provided, http.getResponseBody() will read and return the first
'count' bytes of the response. If count is 0, http.getResponseBody() will return the entire response.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 164 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Read the entire response body

$body = http.getResponseBody();

Restrictions

Cannot be used in completion rules.

http.getResponseBodyLines([count])

Splits the body data of the HTTP request into individual lines and returns an array of the data.

If the response has chunked transfer encoding this function will return the de-chunked body. Similarly if
the response is gzip or deflate compressed the body will be returned uncompressed.

If the optional 'count' parameter is provided, http.getResponseBodyLines() will read and return the first
'count' bytes of the response. If count is 0, http.getResponseBodyLines() will return the entire response.

Sample Usage
Read the entire response body

$body = http.getResponseBodyLines();

Restrictions

Cannot be used in completion rules.

http.getResponseCode()

Returns the status code from the first line of the HTTP response.

Sample Usage
Log 404 responses

if(http.getResponseCode() == 404) {

log.info("404 page for " . http.getPath());

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 165 of 294

Function Reference

http://www.ivanti.com/company/legal

http.getResponseCookie(name)

Returns the value of the named cookie in the HTTP response.

http.getResponseCookie() is a helper method to make it easier to parse the HTTP Set-Cookie header
and extract the values of that particular cookie, rather than using http.getResponseHeader() directly.

If the cookie does not exist, http.getResponseCookie() will return the empty string.

This function should be called in a response rule; it has no effect in a request rule.

Sample Usage
Get the PHP session cookie

$cookie = http.getResponseCookie("PHPSESSIONID");

http.getResponseCookies()

Returns a hash containing the names of all the cookies being set in this response, mapped to their
values.

This function should be called in a response rule; it has no effect in a request rule.

Sample Usage
List all of the cookies that are being set in

the response and their values

$cookies = http.getResponseCookies();

foreach($cookie in hash.keys($cookies)) {

log.info($cookie . ": " . $cookies[$cookie]);

}

http.getResponseHeader(name)

Returns the value of a named HTTP header in the HTTP response, or the empty string if the header does
not exist or has an empty value. The header lookup is case-insensitive.

Sample Usage
Get the mime type of the response

$mime = http.getResponseHeader("Content-Type");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 166 of 294

Function Reference

http://www.ivanti.com/company/legal

note that the MIME type may look like

'text/html; charset=ISO-8859-1'

http.getResponseHeaderNames() - deprecated

This function has been deprecated. Use instead "http.listResponseHeaderNames()" on page 169.

Returns a list of all the headers that are present in the response.

The headers are returned as a single string, separated by spaces.

http.getResponseHeaders()

Returns a hash containing all the header names in the response mapped to their values.

Sample Usage
Show all the headers in the response

$headers = http.getResponseHeaders();

foreach($header in hash.keys($headers)) {

log.info($header . "=" . $headers[$header]);

}

http.getResponseVersion()

Returns the version of the HTTP protocol being used. It returns the version string in the first line of the
HTTP response, such as 'HTTP/1.1'. It will return the empty string in the case of HTTP/0.9 response.

Sample Usage
Get the HTTP response version

$version = http.getResponseVersion();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 167 of 294

Function Reference

http://www.ivanti.com/company/legal

http.getScheme()

Returns the Scheme portion of the HTTP request URL. If no scheme was included in the request, this
function will return the empty string. For HTTP/2 requests, the scheme is received from the client as the
":scheme" pseudo-header. For HTTP/1.x requests, the scheme is normally omitted unless the traffic
manager is being used as an explicit HTTP proxy.

Sample Usage
Retrieve the scheme

$scheme = http.getScheme();

http.getVersion()

Returns the version string from the HTTP request being sent to the back-end server. For HTTP/0.9
requests, the returned value will be an empty string as there is no version specifier in HTTP/0.9. The
returned value will not necessarily match the HTTP version in use by the client as the traffic manager
might convert the request before processing it. To obtain the HTTP version in use by the client
connection, use http.getClientVersion().

Sample Usage
if (http.getVersion() == "HTTP/1.1") {

log.info("Sending HTTP/1.1 request to server.");

}

http.headerExists(name)

Reports if a named header exists or not. It is similar to http.getHeader(), but makes it possible to
distinguish between a header not being present and a header having no value.

The lookup is case-insensitive.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage
Add a host header if it is missing

if(!http.headerExists("Host")) {

http.addheader("Host", "unknown");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 168 of 294

Function Reference

http://www.ivanti.com/company/legal

http.listFormParamNames()

Returns an array containing the names of all the form parameters present in the URL query string and, if
the request is a POST, in the POST body data. If the same parameter appears multiple times in the
request, it will only appear once in the list returned by this function.

Sample Usage
Log all of the form parameters and values

$params = http.listFormParamNames();

foreach($param in $params) {

log.info($param . "=" .

http.getFormParam($param, ","));

}

http.listHeaderNames()

Returns a list of all the headers that are present in the request.

The headers are returned as an array.

Sample Usage
Log all of the header names and values

$headers = http.listHeaderNames();

foreach($header in $headers) {

log.info($header . "=" . http.getHeader($header));

}

http.listResponseHeaderNames()

Returns a list of all the headers that are present in the response.

The headers are returned as an array.

Sample Usage
Log all of the header names and values

$headers = http.listResponseHeaderNames();

foreach($header in $headers) {

log.info($header . "=" . http.getHeader($header));

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 169 of 294

Function Reference

http://www.ivanti.com/company/legal

}

http.normalizePath(url)

Flattens a decoded URL path, converting '//' to '/', '/./' to '/', and flattening '/a/../' to '/'. It returns the
flattened path string.

If the file system path is invalid, this function returns the empty string. Invalid paths include those that
contain disallowed characters like '\0', invalid hex-escapes, or that use '../' sequences to reference a
location outside the local root.

This function should be used on the retrieved URL before attempting path matching for access control.
Remember to pass in a %-decoded URL path, to prevent disguised paths and control codes from being
'hidden' in the path.

Sample Usage
Check for access to /secure

$path = http.normalizePath(http.getPath());

if(!$path) {

bad path ...

} else if(string.startsWith($path, "/secure")) {

request to restricted area: check credentials

}

http.redirect(address)

Sends back an HTTP 302 temporary redirect response, which will instruct a web browser to fetch the
specified URL.

The URL specified will be used as the value of the 'Location' header in the response sent to the client. As
described in RFC 7231, section 7.1.2, the value of the Location header must be an ASCII-encoded URI-
reference, with any illegal characters properly percent-encoded.

Care must be taken when constructing the URL for this function from an untrusted source. As a security
measure, if any characters of ASCII value 32 and below are found in the supplied URL, http.redirect will
percent-encode them, however this action will not mitigate all potential security problems.

This function, excepting the additional percent-encoding step, is the equivalent of http.sendResponse(
"302 Moved Temporarily", "text/html", "", "Location: " . $url);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 170 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Redirect all 404 error pages to our front page

if(http.getResponseCode() == 404) {

http.redirect("http://www.example.com/");

}

Restrictions

Cannot be used in completion rules.

http.removeCookie(name)

Removes the named cookie from the incoming HTTP request.

http.removeCookie is a helper method that makes it easier to parse the HTTP Cookie header and
remove a particular cookie, rather than using http.getHeader() and http.setHeader() directly.

Sample Usage
Remove the 'Priority' cookie

http.removeCookie("Priority");

http.removeHeader(name)

Removes a named header if it exists in the request.

Sample Usage
Remove the 'Accept-Language' header if it exists

http.removeHeader("Accept-Language");

http.removeResponseCookie(name)

Removes a cookie from the HTTP response.

This function should be called in a response rule; it has no effect in a request rule.

Sample Usage
Remove the 'Priority' cookie

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 171 of 294

Function Reference

http://www.ivanti.com/company/legal

http.removeResponseCookie("Priority");

http.removeResponseHeader(name)

Removes the named HTTP header from the HTTP response. The header lookup is case-insensitive.

Sample Usage
Remove the 'Location' response header

http.removeResponseHeader("Location");

http.responseHeaderExists(name)

Reports if a named header exists in the HTTP response. It is similar to http.getResponseHeader(), but
makes it possible to distinguish between a header not being present and a header having no value.

Header lookups are case-insensitive.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage
if(http.responseHeaderExists("Location")) {

Web server is redirecting user to

another location

}

http.scrubRequestHeaders(header1, header2, ...)

Limits the allowed HTTP request headers to a known set. The allowed headers can either be passed in as
a list or space separated in a single argument.

Care should be taken when using this function to ensure that the headers that are required for
connection handling are let through. At the very least, the following should be allowed: Connection,
Content-Length, Transfer-Encoding, Content-Type, Host For a complete list of HTTP headers, refer to
RFC2616. Protocols that extend HTTP, such as WebDAV, use other headers.

Sample Usage
Remove all headers, except the Connection,

Content-Type, Transfer-Encoding, Content-Length

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 172 of 294

Function Reference

http://www.ivanti.com/company/legal

and Host headers.

These 2 examples are identical

http.scrubRequestHeaders("Host",

"Connection", "Content-Type",

"Transfer-Encoding", "Content-Length");

http.scrubRequestHeaders(

"host connection content-type transfer-encoding".

" content-length");

http.scrubResponseHeaders(header1, header2, ...)

Limits the allowed HTTP response headers to a known set. The allowed headers can either be passed in
as a list or space separated in a single argument.

Care should be taken when using this function to ensure that the headers that are required for
connection handling are let through. At the very least, the following should be allowed: Connection,
Content-Length, Transfer-Encoding, Location For a complete list of HTTP headers, refer to RFC2616.
Protocols that extend HTTP, such as WebDAV, use other headers.

Sample Usage
Remove all headers, except the Date, Connection,

Content-Type, Transfer-Encoding, Content-Length

and Location headers.

These 2 examples are identical

http.scrubResponseHeaders("Date",

"Connection", "Content-Type",

"Transfer-Encoding", "Content-Length",

"Location");

http.scrubResponseHeaders(

"date connection content-type transfer-encoding".

" content-length location");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 173 of 294

Function Reference

http://www.ivanti.com/company/legal

http.sendResponse(code, type, body, headers)

Hands back an HTTP response to the client instead of balancing the request via a pool onto a node. It
generates a correct HTTP response from the response code, content type, body data and headers
supplied. Multiple headers should be separated with \r\n (note, however, that your traffic manager may
override some of these headers, e.g. the 'Connection' header).

For more sophisticated behaviour (for example, compressing responses using http.compress.enable)
the http.stream.* methods should be used to respond to a client.

Sample Usage
Deny access and close connection

http.sendResponse("403 Permission Denied",

"text/html", "Go away",

"Set-Cookie: denied=Yes\r\nX-Foo: Bar");

Restrictions

Cannot be used in completion rules.

http.setBody(body)

Sets the request body for this HTTP request to the supplied string, replacing any request body already
present.

This also updates the 'Content-Length' header in the request to the length of the new body data.

Sample Usage
Change the order!

$body = http.getBody();

$body = string.regexsub($body, "Buy", "Sell", "g");

http.setBody($body);

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 174 of 294

Function Reference

http://www.ivanti.com/company/legal

http.setCookie(name, value)

Sets the value of the named cookie in the incoming HTTP request.

http.setCookie is a helper method that makes it easier to parse the HTTP Cookie header and set the
value of a particular cookie, rather than using http.getHeader() and http.setHeader() directly.

An HTTP 'Cookie' header can have multiple values, such as

Cookie: user-id=Joe; user-type=gold

Sample Usage
Set the priority cookie

http.setCookie("Priority", "Gold");

http.setEscapedPath(url)

Replaces the path portion of the request URL with the supplied value. If the replacement value contains
a '?', this function will also replace the query string; otherwise, any query string is preserved. Characters
whose ASCII value is less than or equal to 32 and '%' will be %-encoded in the replacement value.

Sample Usage
Make customer buy widget:

http.setEscapedPath("/purchase?product=widget");

http.setHeader(name, value)

Sets the value of the named HTTP header.

A case-insensitive lookup is first performed in order to identify any existing headers, replacing the value
where a match is found.

Note that the "Connection" header is manipulated by your traffic manager and that changing its value
in TrafficScript may not give the expected results.

If an invalid header name is specified, the function will print a warning and return without modifying the
HTTP request.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 175 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Add (or replace) an X-Forwarded-By header

http.setHeader("X-Forwarded-By",

"vTM " . sys.hostname());

http.setIdempotent(resend)

Marks a request as resendable or non-resendable.

An idempotent request has no detrimental side effects, so it can safely be submitted multiple times. A
simple page retrieval is generally idempotent. A non-idempotent request has a side effect - for
example, it may update a database, or initiate a purchase. The HTTP/1.1 specification regards all GET,
HEAD, PUT, DELETE, OPTIONS and TRACE requests as idempotent.

Your traffic manager tags these requests as 'resendable'; if the request is submitted to a back-end node
and a correct response is not received, your traffic manager will resubmit the request to another back-
end node. All other requests, such as POST requests are not resent if a back-end node fails to generate
a correct response.

http.setIdempotent() can override this behaviour. If 'resend' has a non-zero value, this indicates that if
the request is submitted to a back-end node and a correct response is not received, your traffic
manager should resubmit the request to another back-end node.

If 'resend' is zero, this indicates that the request should only be attempted against one back-end node.

Note that a request cannot be resent if it has begun streaming data from the client to the node before it
detects the failure. To avoid this, you can read the entire request within the TrafficScript rule, so that it is
buffered in its entirety internally in the TrafficManager.

Sample Usage
This request can be resent

if(http.getMethod() == "POST") {

Force the {{product_name}}

to read the entire HTTP body

http.getBody();

Mark this request as resendable

http.setIdempotent(1);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 176 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

http.setMethod(method)

Sets the HTTP method, changing the original request.

Sample Usage
Force HTTP POSTs to GETs

if(http.getMethod() == "POST") {

http.setBody("");

http.setMethod("GET");

}

http.setPath(url)

Replaces the path portion of the request URL with the supplied value. If the replacement value contains
a '?', this function will also replace the query string; otherwise, any query string is preserved. This
function will %-encode any character excluding following set as defined in RFC3986 - Unreserved: A-Z,
a-z, 0-9, ., _, - - Reserved: !, *, (,), ;, :, @, &, =, +,' $, ',', ?, /, #, [,] - '%'

Sample Usage
Make customer buy widget:

http.setPath("/purchase?product=widget");

http.setQueryString(querystring)

Replaces the query-string portion of the request URL with the supplied replacement. Any control
characters in the replacement are %-encoded.

Sample Usage
Rewrite the query string

http.setQueryString($newqs);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 177 of 294

Function Reference

http://www.ivanti.com/company/legal

http.setRawPath(url)

Replaces the path portion of the request URL with the supplied value. If the replacement value contains
a '?', this function will also replace the query string; otherwise, any query string is preserved. URL will not
be %-encoded.

Sample Usage
Make customer buy widget:

http.setRawPath("/purchase?product=widget");

http.setRawQueryString(querystring)

Replaces the query-string portion of the request URL with the supplied replacement. Unlike
http.setQueryString, control characters are not encoded.

Sample Usage
Rewrite the query string

http.setRawQueryString("foo=%20bar");

http.setResponseBody(body, [transfer-encoding])

Sets the response body for this HTTP response to the supplied string, replacing any response body
already present.

This also updates the 'Content-Length' header in the response to the length of the new body data. In
addition the 'Content-Encoding' header is removed as we only ever set body data which is not encoded
or compressed. If the server is still sending the original response body when this function is called, the
connection to the server will be harmlessly dropped.

The optional 'transfer-encoding' parameter indicates the encoding of the body data (for example,
'chunked').

Sample Usage
$body = http.getResponseBody(0);

$body = string.regexsub($body, "Buy", "Sell", "g");

http.setResponseBody($body);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 178 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

http.setResponseCode(code, [message])

Sets the status code and message in the first line of the HTTP response.

Sample Usage
Not enough credit!

http.setResponseCode("402", "Payment required");

http.setResponseCookie(name, value, [options])

Sets a cookie in the HTTP response. If the named cookie already exists, this function replaces its value.

The options are a semi-colon separated list of cookie options, such as "domain", "path", "expires" and
"secure".

If the named cookie exists and no 'options' are provided, the current options for the named cookie are
preserved.

This function may be called from a request rule or a response rule.

Sample Usage
Set the priority cookie

http.setResponseCookie("Priority", "Gold");

Set a username cookie, with various options

http.setResponseCookie("Username", "mork",

"domain=example.com; path=/cgi-bin");

http.setResponseHeader(name, value)

Sets a HTTP header in the HTTP response that will be sent back to the client. If the header already exists
in the response, then it will be replaced with this new value. The header lookup is case-insensitive.

Note that this function should not be used with the Connection header, i.e. setResponseHeader
("Connection", value) since it may not give the expected results.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 179 of 294

Function Reference

http://www.ivanti.com/company/legal

If an invalid header name is specified, the function will print a warning and return without modifying the
HTTP request.

Sample Usage
Change the server string

http.setResponseHeader("Server",

"vTM");

http.aptimizer.bypass()

Do not use Web Accelerator to optimize the result of this request. Note that http.aptimizer.bypass()
should not be used to turn off content optimization for requests that have been previously optimized as
this might result in some requests not being served. Instead, create a new Web Accelerator profile with
the mode set to 'Idle' and assign this profile to the request using http.aptimizer.use().

Sample Usage
Bypass content optimization if the query string

contains a 'bypass_aptimizer' parameter. This could

be used to quickly compare the difference between

optimized and unoptimized versions of a web page.

if(http.doesFormParamExist("bypass_aptimizer")) {

http.aptimizer.bypass();

}

Restrictions

Cannot be used in completion rules.

http.aptimizer.use(scope, profile)

Use the specified Web Accelerator scope and profile to optimize web content served to the client that
sent this request. If the named Web Accelerator scope or profile does not exist then a warning message
will be logged and the traffic manager will choose a scope matching the request based on the Web
Accelerator settings configured for the virtual server, and use the associated profile. If no scope
matches the request then no optimization will occur. If the virtual server does not have Web Accelerator
enabled, then a warning message will be logged and no optimization will occur.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 180 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Optimize web content for clients based in Australia

$ip = request.getRemoteIP();

if(geo.getCountry($ip) == "Australia") {

http.aptimizer.use(

"Any hostname or path",

"Remote Users"

);

}

Restrictions

Cannot be used in completion rules.

http.auth.getAuthenticatedUser()

If the HTTP request has been authenticated via Authentication configured on the relevant Virtual Server,
the authenticated user name can be fetched with this function. Basic-Auth or non-authenticated
requests will return the empty string.

Sample Usage
$u = http.auth.getAuthenticatedUser();

log.info("Authenticated User: " . $u);

backend checks this header:

http.setHeader("X-Frontend-Auth-User", $u);

http.cache.disable()

Prevents this response from being cached. In a request rule, this additionally prevents a cache lookup
for this request.

Sample Usage
don't cache static content...

if($staticcontent) { http.cache.disable(); }

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 181 of 294

Function Reference

http://www.ivanti.com/company/legal

http.cache.enable()

Performs the opposite function to http.cache.disable(), and re-enables the default caching behaviour
when the dynamic caching option in the virtual server is enabled.

Sample Usage
only cache what we explicitly enable

http.cache.disable(); # turn off everything

if($agent == "googlebot" || $is_app1) {

http.cache.enable();

}

Restrictions

Cannot be used in completion rules.

http.cache.exists([poolname])

Returns 1 if the current request can (currently) be responded to from the cache, otherwise 0.

Note that even if the request is in the cache at the time of this call, it may be removed from the cache by
the time that TrafficScript processing has finished and the traffic manager can send it. If a cached
response must be guaranteed, http.cache.respondIfCached() should be used.

A pool name can be provided as optional argument in order to make the lookup use the specified pool.
Without this argument, the lookup will use the pool previously selected with pool.select or the virtual
server's default pool.

This function always returns 0 if called in a response rule.

Sample Usage
Use a rate class only if the page is going to be

served from the backend.

if(!http.cache.exists()) {

The page cannot be served from the cache.

The traffic manager will have to get the page

from a back-end server, so rate-limit the

connection:

rate.use("rate");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 182 of 294

Function Reference

http://www.ivanti.com/company/legal

http.cache.respondIfCached([poolname])

Sends a cached response to the client without any further rule processing and without connecting to a
back-end server. If no match is found in the cache or if the request does not allow cached responses,
rule processing continues normally. If the response can be served from the cache, no statements after
this function call will be processed and the client will get the cached page.

A pool name can be provided as optional argument in order to make the lookup use the specified pool.
Without this argument, the lookup will use the pool previously selected with pool.select or the virtual
server's default pool.

This function does nothing if called in a response rule.

Sample Usage
Use a rate class only if the page is going to be

served from the backend.

http.cache.respondIfCached();

#

If we get here, the page could not be served

from the cache. The traffic manager will have

to get the page from a back-end server, so

rate-limit the connection:

rate.use("rate");

Restrictions

Cannot be used in completion rules.

http.cache.setkey(key)

Allows multiple variants of the same URL to be considered distinct objects, even if the standard 'Vary'
RFC semantics would consider the pages identical. Cached objects will be stored with this key, and
subsequent requests for the same URL will only match if the same key is provided. An example use is to
provided different cached content based on a portion of the User-Agent field of the request.

Note that successive uses of this function will overwrite the previous use rather than append the new
key to it.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 183 of 294

Function Reference

http://www.ivanti.com/company/legal

Note that keys longer than 31 bytes will be shortened using a non-cryptographic digest function.
Passing the output of a cryptographic hash function applied to such a key may give better results, for
example string.drop(string.hashSHA256($key), 1) returns the first 31 bytes of a SHA-2 hash of the
$key.

Sample Usage
internal/external users see different pages

http.cache.setkey($am_internal_user);

Restrictions

Cannot be used in completion rules.

http.compress.disable()

Stops this HTTP response from being compressed. This function overrides the Virtual Server Content
Compression settings, so this is useful for stopping particular MIME types for certain browsers from
being compressed.

Sample Usage
Don't compress text/css pages

if($contenttype == "text/css") {

http.compress.disable();

}

Restrictions

Cannot be used in completion rules.

http.compress.enable()

Allows this individual HTTP response to be compressed. If this function is called for an HTTP response,
then the Virtual Server settings for Content Compression are ignored, and the response will be
compressed, assuming that the client supports compression. This function return 0 if it successfully
enables compression

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 184 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Compress all text pages for Gecko

if(string.startswith($contenttype, "text/") &&

string.contains($useragent, "Gecko")) {

http.compress.enable();

}

Restrictions

Cannot be used in completion rules.

http.connection.sendOrigin(origin1, origin2, ...)

When a request is received via an HTTP/2 stream, calling this function will result in the traffic manager
sending an ORIGIN (RFC 8336) frame to the client on the control stream. The ORIGIN frame will have
the supplied URLs in the array provided as its entries.

The ORIGIN frame informs the browser that the specified URL(s) are provided authoritatively by this
same virtual server, and requests for these websites can be coalesced into the same HTTP/2 connection.
The URLs must start with http:// or https://, contain an optional port number, and must not provide a
trailing path.

The http.connection.sendOrigin() function has no effect if the request is not a valid HTTP/2 request. If
the function is called for additional requests sent over the same HTTP/2 connection, subsequent
ORIGIN frames will be sent only if the URLs supplied differ from the previous invocation of
http.connection.sendOrigin() for that connection. Browser behavior in response to receiving an ORIGIN
frame may vary.

Sample Usage
http.connection.sendorigin(

["https://www.example.com",

"https://api.example.com"]);

log.info("Sent ORIGIN frame");

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 185 of 294

Function Reference

http://www.ivanti.com/company/legal

http.kerberos.getClientPrincipalName()

Return the principal name to be used for this client in Kerberos Protocol Transition. If
http.kerberos.setClientPrincipalName was called, returns the value set by it, otherwise if a principal
name can be deduced from any client certificate, returns that. The empty string will be returned in the
case of no principal name, or failure.

Sample Usage
$principal = http.kerberos.getClientPrincipalName();

if(! $principal) {

if(ssl.clientCertStatus() != "OK" &&

ssl.clientSupportsSecureRenegotiation()) {

ssl.requestCert();

$principal =

http.kerberos.getClientPrincipalName();

}

if(! $principal) {

Fall back to forms based authentication

http.redirect("/login.cgi");

}

}

http.kerberos.getDelegatedTicket()

Attempts to get a Kerberos ticket delegated to this client using Protocol Transition, encoded for use in
an Authorization header. Uses the value returned by http.kerberos.getClientPrincipalName to identify
the client principal to be delegated to. If a pool has been set (with pool.use, or in a response rule), uses
the Kerberos Principal Configuration set for that pool (if any), otherwise uses the one set for the virtual
server.

Sample Usage
$ticket = http.kerberos.getDelegatedTicket();

if ($ticket) {

http.setHeader('Authorization',

'Negotiate ' . $ticket);

request.retry();

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 186 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

http.kerberos.getPrincipal()

Returns the name of the Kerberos principal catalog item that is currently configured for use by the
traffic manager when performing Kerberos Protocol Transition. If http.kerberos.setPrincipal was called,
returns the value set by it, otherwise the value from the configuration will be returned if present. The
empty string will be returned in the case of no configured principal name, or failure.

Sample Usage
$principal = http.kerberos.getPrincipal();

if(! string.len($principal)) {

Provide a user friendly error page

http.redirect("/error.html");

}

http.kerberos.getTargetPrincipalName()

Return the principal name to be used for the target service in Kerberos Protocol Transition. If
http.kerberos.setTargetPrincipalName was called, returns the value set by it, otherwise the value from
the configuration will be returned if present. The empty string will be returned in the case of no
configured principal name, or failure.

Sample Usage
$principal = http.kerberos.getTargetPrincipalName();

if(! $principal) {

Provide a user friendly error page

http.redirect("/error.html");

}

http.kerberos.isEnabled()

Returns true if Kerberos protocol transition is currently enabled on the connection, otherwise false.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 187 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
$user = "";

$basic = http.getHeader("Authorization");

$failed_auth = ! string.startsWith($basic,

"Basic ");

if(! $failed_auth) {

$basic = string.skip($basic, 6);

$dec = string.base64decode($basic);

$up = string.split($dec, ":");

$user = $up[0]; $pass = $up[1];

$auth = auth.query("LDAP-Authenticator",

$user, $pass);

$failed_auth = ! $auth['OK'];

}

if($failed_auth) {

http.sendResponse("401 Unauthenticated",

"text/plain",

"Authentication Required",

"WWW-Authenticate: ".

"Basic realm=\"YourRealm\"");

} else {

If Kerberos Protocol Transition is enabled for

the connection, ensure the user name is used.

if(http.kerberos.isEnabled()) {

http.kerberos.setClientPrincipalName($user);

}

}

http.kerberos.setClientPrincipalName(PrincipalName)

Sets the principal name to be used for this client in Kerberos Protocol Transition.

Sample Usage
java.run("com.example.GetClientPrincipal");

$principal =

connection.data.get('KerberosClientPrincipal');

http.kerberos.setClientPrincipalName($principal);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 188 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

http.kerberos.setEnabled(Enabled)

Explicitly specify whether Kerberos protocol transition should be used on the connection. The value set
will override any configuration on the virtual server.

Sample Usage
$client = http.kerberos.getClientPrincipalName();

if(string.len($client) > 0) {

http.kerberos.setEnabled(true);

}

Restrictions

Cannot be used in completion rules.

http.kerberos.setPrincipal(PrincipalCatalogItem)

Sets the name of the Kerberos principal catalog item that is to be used for performing Kerberos
Protocol Transition.

Sample Usage
if(geo.getLocation() == "Cambridge") {

http.kerberos.setPrincipal("Cambridge Realm");

}

Restrictions

Cannot be used in completion rules.

http.kerberos.setTargetPrincipalName(PrincipalName)

Sets the principal name to be used for the target service for Kerberos Protocol Transition.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 189 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
if(http.getResponseCode() == 401) {

$node = connection.getNode();

if(string.len($node) > 0) {

http.kerberos.setTargetPrincipalName(

"HTTP/" . $node . "@EXAMPLE.COM");

$ticket = http.kerberos.getDelegatedTicket();

if ($ticket) {

http.setHeader('Authorization',

'Negotiate ' . $ticket);

request.retry();

}

}

}

Restrictions

Cannot be used in completion rules.

http.request.delete(url, [headers], [timeout])

Issues an HTTP DELETE request for a remote web page. $1 is set to the HTTP response code (e.g. 204 for
OK), or is 0 if there was an error. $2 is set to the Content-Type of the response (or an error message if
there was an error). $3 is set to the content-headers of the response, in the format: [<header-
line>\r\n]*. $4 is set to the first line of the HTTP response. The entire original response may be
reconstructed as $4."\r\n".$3."\r\n".$body, where $body is the result of http.request.get.

HTTPS pages can be requested by using the https:// prefix for the url.

A timeout parameter can be given (in seconds). If the request does not complete in this time, then an
error will be given instead.

Requests made with http.request.delete() will use keepalive connections to the destination server.
Provided the request was completed successfully, these keepalive connections will be re-used by any
invocation of http.request.delete(), http.request.head() or http.request.get() to the same destination
host:port, from any rule, in any virtual server. If the request is to a node in a pool, the connection will be
shared with other requests your traffic manager makes to the same node. If the request made with
http.request.delete() was unsuccessful, your traffic manager closes the connection.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 190 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Delete a resource from the server

$book_id = http.getHeader("X-Book-ID");

http.request.delete("http://www.example.com/books/"

. $book_id);

if($1 != 204) {

http.sendResponse($1, "text/plain", "",

"Could not delete book " . $book_id);

}

Restrictions

Cannot be used in completion rules.

http.request.get(url, [headers], [timeout])

Issues an HTTP request for a remote web page and returns the body of the page requested. $1 is set to
the HTTP response code (e.g. 200 for OK), or is 0 if there was an error. $2 is set to the Content-Type of
the response (or an error message if there was an error). $3 is set to the content-headers of the
response, in the format: [<header-line>\r\n]*. $4 is set to the first line of the HTTP response. The entire
original response may be reconstructed as $4."\r\n".$3."\r\n".$body, where $body is the result of
http.request.get.

HTTPS pages can be requested by using the https:// prefix for the url.

A timeout parameter can be given (in seconds). If the request does not complete in this time, then an
error will be given instead.

Requests made with http.request.get() will use keepalive connections to the destination server.
Provided the request was completed successfully, these keepalive connections will be re-used by any
invocation of http.request.get() or http.request.head() to the same destination host:port, from any rule,
in any virtual server. If the request is to a node in a pool, the connection will be shared with other
requests your traffic manager makes to the same node. If the request made with http.request.get() was
unsuccessful, your traffic manager closes the connection.

Sample Usage
$body = http.request.get("https://www.example.com/",

"Cookie: foo=bar");

if($1) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 191 of 294

Function Reference

http://www.ivanti.com/company/legal

http.sendResponse($1, $2, $body, "");

} else {

log.info("An error occurred: " . $2);

}

Restrictions

Cannot be used in completion rules.

http.request.head(url, [headers], [timeout])

Issues an HTTP HEAD request for a remote web page. $1 is set to the HTTP response code (e.g. 200 for
OK), or is 0 if there was an error. $2 is set to the Content-Type of the response (or an error message if
there was an error). $3 is set to the content-headers of the response, in the format: [<header-
line>\r\n]*. $4 is set to the first line of the HTTP response. The entire original response may be
reconstructed as $4."\r\n".$3."\r\n".$body, where $body is the result of http.request.get.

HTTPS pages can be requested by using the https:// prefix for the url.

A timeout parameter can be given (in seconds). If the request does not complete in this time, then an
error will be given instead.

Requests made with http.request.head() will use keepalive connections to the destination server.
Provided the request was completed successfully, these keepalive connections will be re-used by any
invocation of http.request.head() or http.request.get() to the same destination host:port, from any rule,
in any virtual server. If the request is to a node in a pool, the connection will be shared with other
requests your traffic manager makes to the same node. If the request made with http.request.head()
was unsuccessful, your traffic manager closes the connection.

Sample Usage
Check that this site is working

http.request.head("http://www.example.com/");

if($1 != 200) {

pool.use("Backup site");

}

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 192 of 294

Function Reference

http://www.ivanti.com/company/legal

http.request.post(url, POST data, [headers], [timeout])

Issues an HTTP POST request for a remote web page, and returns the body of the page requested. $1 is
set to the HTTP response code (e.g. 200 for OK), or is 0 if there was an error. $2 is set to the Content-
Type of the response (or an error message if there was an error). $3 is set to the content-headers of the
response, in the format: [<header-line>\r\n]*. $4 is set to the first line of the HTTP response. The entire
original response may be reconstructed as $4."\r\n".$3."\r\n".$body, where $body is the result of
http.request.post.

HTTPS pages can be requested by using the https:// prefix for the url.

A timeout parameter can be given (in seconds). If the request does not complete in this time, then an
error will be given instead.

Requests made with http.request.post() will always create a new connection to the destination server
and will not use an existing connection. After a request made with http.request.post() has finished
successfully, its connection can be re-used by any invocation of http.request.get() or http.request.head()
to the same destination host:port, from any rule, in any virtual server. If the request was to a node in a
pool, the connection will also be shared with other requests your traffic manager makes to the same
node. If the request made with http.request.post() was unsuccessful, your traffic manager closes the
connection.

Sample Usage
$body = http.request.post("http://www.example.com/",

"data",

"Cookie: foo=bar\nContent-Type: text/plain");

if($1) {

http.sendResponse($1, $2, $body, "");

}

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 193 of 294

Function Reference

http://www.ivanti.com/company/legal

http.request.put(url, PUT data, [headers], [timeout])

Issues an HTTP PUT request for a remote web page, and returns the body of the page requested. $1 is
set to the HTTP response code (e.g. 200 for OK), or is 0 if there was an error. $2 is set to the Content-
Type of the response (or an error message if there was an error). $3 is set to the content-headers of the
response, in the format: [<header-line>\r\n]*. $4 is set to the first line of the HTTP response. The entire
original response may be reconstructed as $4."\r\n".$3."\r\n".$body, where $body is the result of
http.request.put.

HTTPS pages can be requested by using the https:// prefix for the url.

A timeout parameter can be given (in seconds). If the request does not complete in this time, then an
error will be given instead.

Requests made with http.request.put() will always create a new connection to the destination server and
will not use an existing connection. After a request made with http.request.put() has finished
successfully, its connection can be re-used by any invocation of http.request.get() or http.request.head()
to the same destination host:port, from any rule, in any virtual server. If the request was to a node in a
pool, the connection will also be shared with other requests your traffic manager makes to the same
node. If the request made with http.request.put() was unsuccessful, your traffic manager closes the
connection.

Sample Usage
$body = http.request.put("http://www.example.com/",

"data",

"Cookie: foo=bar\nContent-Type: text/plain");

if($1) {

http.sendResponse($1, $2, $body, "");

}

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 194 of 294

Function Reference

http://www.ivanti.com/company/legal

http.request.ssl.get(url, ca_certificates, [headers], [timeout], [
verify-hostname])

Issues an HTTPS request for a remote web page and returns the body of the page requested. Its
behavior is identical to that of http.request.get when used with an HTTPS URL except for the following
differences:

• The URL must start with 'https://', e.g https://www.iana.org/, i.e. this function can only be used
for secure communication.

• http.request.ssl.get will verify the server's certificate during the SSL Handshake. It will do so
using the CA certificates provided in the second argument. This argument has to be an array of
certificates. Certificates must be provided in PEM format. If one of the provided strings is not a
valid certificate in PEM format, or if the array is empty, the function will fail. Therefore,
verification of the peer's certificate is mandatory.

• If the fifth argument has a non-zero value http.request.ssl.get will also check whether the
certificate's common name(s) match the hostname specified in the URL.

• Kept-alive connections are not re-used.

Sample Usage
$issuer = '-----BEGIN CERTIFICATE-----

MIIDxTCCAq2gAwIBAgIQAqxcJmoLQJuPC3nyrkYldzANBgkq

hkiG9w0BAQUFADBsMQswCQYDVQQGEwJVUzEVMBMGA1UEChMM

RGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3d3cuZGlnaWNlcnQu

Y29tMSswKQYDVQQDEyJEaWdpQ2VydCBIaWdoIEFzc3VyYW5j

ZSBFViBSb290IENBMB4XDTA2MTExMDAwMDAwMFoXDTMxMTEx

MDAwMDAwMFowbDELMAkGA1UEBhMCVVMxFTATBgNVBAoTDERp

Z2lDZXJ0IEluYzEZMBcGA1UECxMQd3d3LmRpZ2ljZXJ0LmNv

bTErMCkGA1UEAxMiRGlnaUNlcnQgSGlnaCBBc3N1cmFuY2Ug

RVYgUm9vdCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCC

AQoCggEBAMbM5XPm+9S75S0tMqbf5YE/yc0lSbZxKsPVlDRn

ogocsF9ppkCxxLeyj9CYpKlBWTrT3JTWPNt0OKRKzE0lgvdK

pVMSOO7zSW1xkX5jtqumX8OkhPhPYlG++MXs2ziS4wblCJEM

xChBVfvLWokVfnHoNb9Ncgk9vjo4UFt3MRuNs8ckRZqnrG0A

FFoEt7oT61EKmEFBIk5lYYeBQVCmeVyJ3hlKV9Uu5l0cUyx+

mM0aBhakaHPQNAQTXKFx01p8VdteZOE3hzBWBOURtCmAEvF5

OYiiAhF8J2a3iLd48soKqDirCmTCv2ZdlYTBoSUeh10aUAsg

EsxBu24LUTi4S8sCAwEAAaNjMGEwDgYDVR0PAQH/BAQDAgGG

MA8GA1UdEwEB/wQFMAMBAf8wHQYDVR0OBBYEFLE+w2kD+L9H

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 195 of 294

Function Reference

http://www.ivanti.com/company/legal

AdSYJhoIAu9jZCvDMB8GA1UdIwQYMBaAFLE+w2kD+L9HAdSY

JhoIAu9jZCvDMA0GCSqGSIb3DQEBBQUAA4IBAQAcGgaX3Nec

nzyIZgYIVyHbIUf4KmeqvxgydkAQV8GK83rZEWWONfqe/EW1

ntlMMUu4kehDLI6zeM7b41N5cdblIZQB2lWHmiRk9opmzN6c

N82oNLFpmyPInngiK3BD41VHMWEZ71jFhS9OMPagMRYjyOfi

ZRYzy78aG6A9+MpeizGLYAiJLQwGXFK3xPkKmNEVX58Svnw2

Yzi9RKR/5CYrCsSXaQ3pjOLAEFe4yHYSkVXySGnYvCoCWw9E

1CAx2/S6cCZdkGCevEsXCS+0yx5DaMkHJ8HSXPfqIbloEpw8

nL+e/IBcm2PN7EeqJSdnoDfzAIJ9VNep+OkuE6N36B9K

-----END CERTIFICATE-----';

$body = http.request.ssl.get(

"https://www.iana.org/",

[$issuer],

"User-Agent: MyRule/0.1",

60,

true);

if($1) {

http.sendResponse($1, $2, $body, "");

} else {

log.info("An error occurred: " . $2);

}

Restrictions

Cannot be used in completion rules.

http.stream.continueFromBackend([data])

Stops streaming any data from the current rule and lets your traffic manager send remaining data from
backend. The 'data' parameter can be used to send the last block to be streamed. Rule processing will
finish and no further statements in this or subsequent rules will be executed. Unlike
http.stream.finishResponse(), any data coming from the backend server will continue to be sent from
the backend to the client normally.

Note that this function will behave exactly like http.stream.finishResponse() if run from a request rule.

Sample Usage
http.stream.startResponse(

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 196 of 294

Function Reference

http://www.ivanti.com/company/legal

"200", "text/html", "", "Server: vTM");

while(1) {

read full lines but at most 4k of data:

$data = http.stream.readBulkResponse(4096, "\n");

No more data to read; break out of this loop

if(0 == string.length($data)) {

break;

}

if(string.find($data, "foo") >= 0) {

$data = string.replace($data,"foo","bar");

Job done, exit now. Any remaining body data

will continue to be sent from backend.

http.stream.continueFromBackend($data);

}

stream data to client if not found.

http.stream.writeResponse($data);

}

http.stream.finishResponse();

Restrictions

Cannot be used in completion rules.

http.stream.finishResponse([data])

Indicates that 'data' is the last block to be streamed for the current transaction. Rule processing will stop
after http.stream.finishResponse() has been called, i.e. the remaining statements of the present rule will
not be evaluated and no subsequent rules will be run.

Sample Usage
http.stream.startResponse(

"200", "text/html", "", "Server: vTM");

while(1) {

read full lines but at most 4k of data:

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 197 of 294

Function Reference

http://www.ivanti.com/company/legal

$data = http.stream.readBulkResponse(4096, "\n");

if($data == "")

break; # server has finished the response

invert server's logic:

$data = string.replaceAllI($data, "yes", "no");

http.stream.writeResponse($data);

}

http.stream.finishResponse();

Restrictions

Cannot be used in completion rules.

http.stream.readBulkResponse(count, [delimiter])

Reads (and consumes) data from the server, so that TrafficScript can manipulate the data and send a
modified version to the client.

Reads the number of bytes specified by 'count' from the body of the HTTP response supplied by the
server. Data from the response is only returned up to and including the "last" occurrence of 'delimiter' if
a non-empty delimiter has been specified. Unlike http.getResponseBody(), it also removes the data
returned from the server's response. When the end of the response from the server has been reached,
an empty string is returned.

If the delimiter partially matches at the end of the specified number of bytes, the data returned will
include the full delimiter (thus returning slightly more data than specified). If the delimiter is not found
in the specified number of bytes, then the specified number of bytes of data will be returned.

Sample Usage
Stream a HTTP response back, changing the content

as it is read in.

http.stream.startResponse(

"200", "text/html", "", "Server: vTM");

while(1) {

read several full lines but at most 4k of data:

$data = http.stream.readBulkResponse(4096, "\n");

if($data == "")

break; # server has finished the response

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 198 of 294

Function Reference

http://www.ivanti.com/company/legal

invert server's logic:

$data = string.replaceAllI($data, "yes", "no");

http.stream.writeResponse($data);

}

http.stream.finishResponse();

Restrictions

Cannot be used in completion rules.

http.stream.readResponse(count, [delimiter])

Similar to http.stream.readBulkResponse(), but only returns response body data up to and including the
"first" occurrence of delimiter. The two functions behave identically if no delimiter is provided.

Sample Usage
http.stream.startResponse(

"200", "text/html", "", "Server: vTM");

while(1) {

read full line but at most 4k of data:

$data = http.stream.readResponse(4096, "\n");

if($data == "")

break; # server has finished the response

invert server's logic:

$data = string.replaceAllI($data, "yes", "no");

http.stream.writeResponse($data);

}

http.stream.finishResponse();

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 199 of 294

Function Reference

http://www.ivanti.com/company/legal

http.stream.startResponse(resp_code, content_type, [content_
length, headers])

Sets up an HTTP response from which data can be streamed later by calling http.stream.writeResponse
(). http.stream.startResponse() can only be called once per HTTP transaction. Only 'resp_code' and
'content_type' are mandatory arguments. However, it is recommended to specify the 'content_length' if
possible. If it is provided and a valid integer, your traffic manager will not stream more than that
number of bytes. A set of headers (separated by "\r\n") can be provided in the optional fourth
argument. In a response rule, if no fourth argument is given, the response headers from the back-end
will be sent on to the client (note, however, that your traffic manager may override some of these
headers, e.g. the 'Connection' header)

Sample Usage
http.stream.startResponse(

"200", "text/html", "",

"Server: vTM\r\nX-Hello: World");

while(1) {

read full lines but at most 4k of data:

$data = http.stream.readBulkResponse(4096, "\n");

if($data == "")

break; # server has finished the response

invert server's logic:

$data = string.replaceAllI($data, "yes", "no");

http.stream.writeResponse($data);

}

http.stream.finishResponse();

Restrictions

Cannot be used in completion rules.

http.stream.writeResponse(data)

Sends the data in the 'data' argument to the client. http.stream.writeResponse() can be called multiple
times but http.stream.startResponse() must have been called beforehand.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 200 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
http.stream.startResponse(

"200", "text/html", "", "Server: vTM");

while(1) {

read full lines but at most 4k of data:

$data = http.stream.readBulkResponse(4096, "\n");

if($data == "")

break; # server has finished the response

invert server's logic:

$data = string.replaceAllI($data, "yes", "no");

http.stream.writeResponse($data);

}

http.stream.finishResponse();

Restrictions

Cannot be used in completion rules.

java.run(Java Extension class name, [options])

Runs a named Java Extension. The Java Extension class name must be given, and extra options can also
be supplied to the Extensions. (These are supplied as the 'args' attribute in the Java Extension API). To
use java.run(), first enable Java support through the Traffic Manager Admin UI or product APIs.

Sample Usage
java.run(

"com.example.UserVerify", $user, $password

);

Restrictions

Can only be used with TCP-based protocols, Cannot be used in completion rules.

jwt.generate(Input string, key)

This function is applicable to version 22.2 and later.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 201 of 294

Function Reference

http://www.ivanti.com/company/legal

Generate the signature or digest for the input token(encoded jose header and claims) using provided
key and return the hash of "error" and "description" if generation fails or "signature" if generation is
successfull.

JWT tokens are used to represent claims in cryptographically safe manner.

Sample Usage
Validates the JWT token and return claims

$token = "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ey\

JzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiw\

iYWRtaW4iOnRydWUsImlhdCI6MTY0OTA1MzM5MSwiZXhwIjox\

NjQ5MDU2OTkxfQ";

$key = "This is the key i am going to use";

$key_hex = string.hexencode($key);

$result = jwt.generate($token, $key_hex);

if($result["error"] == false) {

$jwt_token = $token.".".$result["signature"];

log.info("JWT token: ".$jwt_token);

}

Restrictions

Cannot be used in completion rules.

jwt.parseheader(Input string)

This function is applicable to version 22.2 and later.

Parse the header of a JWT token and returns a hash of "error" and "description" if parsing fails else hash
of key/value pairs present in header.

JWT tokens are used to represent claims in cryptographically safe manner.

Sample Usage
Parses the JOSE header of a JWT token

$token = "eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ\

9.eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQo\

gImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.d\

BjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk";

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 202 of 294

Function Reference

http://www.ivanti.com/company/legal

$result = jwt.parseheader($token);

log.info("JOSE header:".lang.dump($result));

Restrictions

Cannot be used in completion rules.

jwt.validate(Input string, key, algorithm)

This function is applicable to version 22.2 and later.

Validates the JWT token against the provided key with expected algorithms and return the hash of
"error" and "description" if validation fails or "claim" if validation is successful.

JWT tokens are used to represent claims in cryptographically safe manner.

Sample Usage
Validates the JWT token and return claims

$token = "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ey\

JzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiw\

iYWRtaW4iOnRydWUsImlhdCI6MTY0OTA1MzM5MSwiZXhwIjox\

NjQ5MDU2OTkxfQ.L176_bYShiAcU7bCfHfvFTFL5Dm5OyAPBh\

KBF71lt_c";

$key = "This is the key i am going to use";

$key_hex = string.hexencode($key);

$claims = jwt.validate($token, $key_hex, "HS256");

if($claims["error"] == false) {

log.info("Claims are: ".lang.dump($claims));

}

Restrictions

Cannot be used in completion rules.

log.error(message)

Writes an error message to the traffic managers's event log file. This log can be viewed through the UI.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 203 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
log.error("Insert coffee to continue");

log.info(message)

Writes an informational message to the traffic manager's event log file. This log can be viewed through
the UI.

Sample Usage
log.info("Everything is OK");

log.warn(message)

Writes a warning message to the traffic manager's event log file. This log can be viewed through the UI.

Sample Usage
log.warn("There may be trouble ahead");

net.dns.resolveHost(hostname)

Resolves a hostname into an IPv4 address, using the DNS name servers configured on the local system.
If the lookup fails, an empty string is returned.

Sample Usage
Do a double-dns lookup

$rip = request.getRemoteIP();

$rhost = net.dns.resolveIP($rip);

$ip = net.dns.resolveHost($rhost);

if($ip != $rip) {

log.warn("Double lookup failed");

}

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 204 of 294

Function Reference

http://www.ivanti.com/company/legal

net.dns.resolveHost6(hostname)

Resolves a hostname into an IPv6 address, using the DNS name servers configured on the local system.
If the lookup fails, an empty string is returned.

Sample Usage
Do a double-dns lookup for an IPv6 address

$rip = request.getRemoteIP();

$rhost = net.dns.resolveIP($rip);

$ip = net.dns.resolveHost6($rhost);

if($ip != $rip) {

log.warn("Double lookup failed");

}

Restrictions

Cannot be used in completion rules.

net.dns.resolveIP(IP address)

Resolves an IP address to a hostname, using the DNS name servers configured on the local system.

Returns a hostname, or the IP address if the address cannot be resolved. An empty string is returned if
the parameter is not a valid IP address.

Sample Usage
$rip = request.getRemoteIP();

$rhost = net.dns.resolveIP($rip);

log.info("Request from ".$rhost);

Restrictions

Cannot be used in completion rules.

pool.activenodes(Pool)

Returns the number of nodes that are alive in the named pool. This will not include any nodes that have
been marked as 'draining'.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 205 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
If the number of live nodes drops to below 3

then only allow GET requests to be processed

normally, other requests get an appropriate

error message

if(pool.activeNodes("database") < 3) {

if (http.getMethod() != "GET") {

pool.use("database_busy");

}

}

pool.checknode(Pool, Host, Port)

Query the pool to determine the status of a node. Will return one of :
"NOTINPOOL","NOSUCHPOOL","NOSUCHHOST","DEAD" "ACTIVE","DISABLED","DRAINING"

Note: "DRAINING" is only returned for nodes present in the pool's configuration and in the 'draining'
state. Nodes deleted from a pool with the 'drain to delete' behavior enabled via the node_delete_
behavior configuration key will show as "NOTINPOOL".

Sample Usage
$status = pool.checknode("FTP Server","app1",21);

if($status != "ACTIVE") {

log.warn("FTP Server app1 unavailable ".$status);

}

Restrictions

Cannot be used in completion rules.

pool.disablednodes(Pool)

Returns the number of nodes that are have been marked as disabled in the named pool.

Sample Usage
Log the number of disabled nodes

$nodes = pool.disabledNodes("mypool");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 206 of 294

Function Reference

http://www.ivanti.com/company/legal

log.info($nodes." nodes are disabled");

pool.drainingnodes(Pool)

Returns the number of nodes that are draining in the named pool.

Sample Usage
Log connections to draining nodes

$pool = connection.getPool();

if(pool.drainingNodes($pool)) {

$node = connection.getNode();

$ip_port = string.split($node, ":");

if(pool.checknode($pool,

$ip_port[0],

$ip_port[1])

== "DRAINING") {

log.info($node." is disabled");

}

}

pool.failednodes(Pool)

Returns the number of nodes that have failed in the named pool.

Sample Usage
Emit a warning if the number of failed nodes

exceeds the number of active nodes.

if(pool.failedNodes("database") >

pool.activeNodes("database")) {

event.emit("warning", "Too many failed nodes");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 207 of 294

Function Reference

http://www.ivanti.com/company/legal

pool.listactivenodes(Pool)

Lists the IP addresses of the nodes that are alive in the named pool. This will not include any nodes that
have been marked as 'draining'.

Sample Usage
Post some data to every active node.

$nodes = pool.listActiveNodes("thepool");

foreach ($node in $nodes) {

http.request.post("http://".$node."/someurl",

"1234");

}

pool.listallnodes(Pool)

Lists the IP addresses of all the nodes including disabled nodes.

Sample Usage
Log every node we know about using port 1234

$nodes = array.filter(pool.listAllNodes("thepool"),

":1234$");

foreach ($node in $nodes) {

log.info("Found ".$node);

}

pool.listdisablednodes(Pool)

Lists the IP addresses of the nodes that are disabled in the named pool.

Sample Usage
Log every disabled node.

$nodes = pool.listDisabledNodes("thepool");

foreach ($node in $nodes) {

log.warn($node." is disabled");

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 208 of 294

Function Reference

http://www.ivanti.com/company/legal

pool.listdrainingnodes(Pool)

Lists the IP addresses of the nodes that are draining in the named pool.

Sample Usage
Search for a node in the draining list

$nodes = pool.listDrainingNodes("thepool");

$mynode = connection.getNode();

if (array.contains($nodes, $mynode)) {

log.info($mynode." is draining");

}

pool.listfailednodes(Pool)

Lists the IP addresses of the nodes that are marked as failed in the named pool.

Sample Usage
Log every failed node.

$nodes = pool.listFailedNodes("thepool");

foreach ($node in $nodes) {

log.warn($node." has failed");

}

pool.select(Pool, [Host, Port])

Selects a pool to load-balance this connection with. By default, the pool name should be a literal string
(i.e. not dynamically generated and not containing any variables), however, if you enable the
"trafficscript!variable_pool_use" global setting variables can be used too. Please refer to the
Troubleshooting section of the vTM TrafficScript Overview and Reference Manual for more information
about this setting. Unlike pool.use(), your traffic manager will continue to process further request rules
after this function.

If the pool named does not exist, your traffic manager will log a warning message.

Optionally, a specific machine can be specified that will be used to forward the request on to. This
machine does not have to be in the pool selected, or in fact in any pool. In this mode, the selected pool
is used only for its configuration settings (e.g. timeout values, SSL encryption options, etc.) The request
will bypass any queueing based on connection or transaction limits defined for the pool.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 209 of 294

Function Reference

http://www.ivanti.com/company/legal

If the machine is specified as an empty string, a node will be chosen from the pool normally. However
the connection will be made to the specified port instead of the port specified in the pool configuration.

Sample Usage
Use the pool named 'Content'

pool.select("Content");

Send this request to www.example.com:80,

using config from pool 'proxy'

pool.select("proxy", "www.example.com", 80);

Send this request to a node from the pool

'Content', but retain the original

destination port

pool.select("Content", "", request.getDestPort());

Restrictions

Cannot be used in completion rules.

pool.use(Pool, [Host, Port])

Selects a pool to load-balance this connection with, and stops processing any more rules. It must only
be used in request rules.

By default the pool name should be a literal string, however, if you enable the "trafficscript!variable_
pool_use" global setting, variables can be used too. Please refer to the Troubleshooting section of the
vTM TrafficScript Overview and Reference Manual for more information about this setting.

If the pool named does not exist, your traffic manager will log a warning message and use the default
pool configured for the virtual server.

Optionally, a specific machine can be specified that will be used to forward the request on to. This
machine does not have to be in the pool selected, or in fact in any pool. In this mode, the selected pool
is used only for its configuration settings (e.g. timeout values, SSL encryption options, etc.) The request
will bypass any queueing based on connection or transaction limits defined for the pool.

If the machine is specified as an empty string, a node will be chosen from the pool normally. However
the connection will be made to the specified port instead of the port specified in the pool configuration.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 210 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Use the pool named 'Content'

pool.use("Content");

Send this request to www.example.com:80,

using config from pool 'proxy'

pool.select("proxy", "www.example.com", 80);

Send this request to a node from the pool

'Content', but retain the original

destination port

pool.select("Content", "", request.getDestPort());

Restrictions

Cannot be used in completion rules.

radius.getCallingStationId()

Obtains the RADIUS calling station identifier (attribute 31) as specified in RFC 2865.

If successful, returns the calling station identifier from a RADIUS Access-Request packet. A return value
of -1 indicates a failure; in this case an error string will be stored in '$1'. This function should be used in
a request rule so that the Access-Request packets are visible to it.

Sample Usage
$res = radius.getCallingStationId();

if($res == -1) {

log.warn("No calling station id: " . $1);

}

Restrictions

Cannot be used in completion rules.

rate.getbacklog(class_name, [context])

Returns the number of connections that are currently waiting to be released by the supplied rate class.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 211 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
$backlog = rate.getbacklog("gold-user",

request.getRemoteIP());

if($backlog > 10){

Tell the customer to come back later

http.sendResponse("503 Service Unavailable",

"text/html", "Go away",

"Retry-After: 10");

}

Restrictions

Cannot be used in completion rules.

rate.use(class_name, [context])

Immediately queues a connection using the named rate class.

The connection and the current TrafficScript rule is stalled until the rate class releases it, according to
the rate limits defined in the class. When the connection is released, the rate.use() function returns and
the TrafficScript rule continues to execute.

If rate.use() is called with the optional 'context' value, it uses a new rate class which inherits all of the
rate settings from the named rate class. All connections called with the same 'context' value use the
same new rate class. This allows you to shape connections based on arbitary data, such as a user name
or source IP address, shaping connections from different users or source IPs independently.

If the connection has passed through the class successfully then the value 1 is returned. If the
connection times out while it is queued, then the TrafficScript rule is abandoned. If the connection
could not be queued because an invalid rate class name was provided, rate.use() returns 0.

Sample Usage
rate.use("protect_database");

rate.use("limit_user",

http.getCookie("SessionID"));

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 212 of 294

Function Reference

http://www.ivanti.com/company/legal

rate.use.noQueue(class_name, [context])

Checks if this connection will exceed the rate limits of the named rate class. If connection is within rate
limits, a value of 1 is returned and the connection is added to rate usage data. If usage has exceeded
rate limits, a value of 0 is returned. If the rate class does not exist, a value of -1 will be returned.

Optionally a context value can be used to check rate limits based on a context, for example, rate limits
for a specific client IP address. See rate.use for more details on context.

Unlike rate.use(), this will not queue connections if the rate limit is exceeded.

Note that calling rate.use() after rate.use.noQueue() will mean that the connection is counted twice,
halving the allowed rate.

Sample Usage
$use = rate.use.noQueue("protect_database");

usage is over rate limits.

if($use == 0){

http.sendResponse("503 Service Unavailable",

"text/html", "Go away",

"Retry-After: 10");

connection.discard();

} else if($use > 0){ # usage is within rate limits

log.info("No queueing");

} else { # Rate class does not exist

log.info("Rate class doesn't exist");

}

Restrictions

Cannot be used in completion rules.

recentconns.exclude()

Specifies that this connection should not be saved in the Recent Connections buffer upon completion.
This function can be used when the virtual server has recent_conns!save_all set to Yes to filter out
unwanted connections from the Recent Connections page.

Note that recent_conns!enabled must be set to Yes on the virtual server for any connections to be
saved.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 213 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Don't bother saving connections that completed

within 1 second and returned a 200.

if(http.getResponseCode() == 200

&& stats.getTransactionDuration() < 1000) {

recentconns.exclude();

}

recentconns.include()

Mark this connection for inclusion in the Recent Connections buffer. Details about this connection can
then be viewed on the Activity > Connections page.

Note that recent_conns!enabled must be set to Yes on the virtual server for any connections to be
saved.

Returns true if the connection will be added to the Recent Connections buffer, or false otherwise.

Sample Usage
Show server errors on the recent connections page

if(http.getResponseCode() >= 500){

recentconns.include();

}

recentconns.markedForInclusion()

Returns whether or not this connection will be added to the Recent Connections page upon
completion.

Connections will be included on the Recent Connections page only if recent_conn!enabled is set to Yes
for this virtual server and the connection has been marked for inclusion either by default, or by the
recentconns.include() function.

Sample Usage
If this rule will be added to the recent

connections page, add some additional info

if(recentconns.markedForInclusion()) {

Add the user's name to the log

$user = connection.data.get("user");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 214 of 294

Function Reference

http://www.ivanti.com/company/legal

http.addResponseHeader("X-Username", $user);

}

request.avoidNode(node)

Indicates that the named node should be avoided if at all possible.

When picking a node to use for a request, the traffic manager will not use any nodes that have been
named by request.avoidNode() unless session persistence mandates it, or unless there are no other
nodes available.

Sample Usage
if we get a 503 Too Busy response, retry

if(http.getResponseCode() == 503) {

if(request.getRetries() < 3) {

request.avoidNode(connection.getNode());

request.retry();

}

}

Restrictions

Cannot be used in completion rules.

request.endsAt(offset)

Marks the end of the current request. Any more data read in from the network is not handled until the
next request has started to be handled.

This function is useful to synchronise requests and responses. An example of its use would be for a line-
oriented protocol such as POP3, where you wish to process each command.

It returns the entire request.

This function allows you to program layer-7 intelligence to correctly parse and manage generic TCP
protocols.

Sample Usage
get one line from input

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 215 of 294

Function Reference

http://www.ivanti.com/company/legal

$req = request.getLine();

this is the end of the current request

request.endsAt(string.len($req));

Note: request.endsAt will return the request,

but we've already got this in $req

Restrictions

Cannot be used in completion rules, Not available when the virtual server's internal protocol is 'generic
streaming'.

request.endsWith(regex)

Marks the end of the current request. Any more data read in from the network is not handled until the
next request has started to be handled.

This function is useful to synchronise requests and responses. An example of its use would be for a line-
oriented protocol such as POP3, where you wish to process each command.

It returns the entire request.

This function allows you to program layer-7 intelligence to correctly parse and manage generic TCP
protocols.

Sample Usage
this is the end of the current request

$req = request.endsWith("\n");

Restrictions

Cannot be used in completion rules, Not available when the virtual server's internal protocol is 'generic
streaming'.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 216 of 294

Function Reference

http://www.ivanti.com/company/legal

request.get([count])

Returns the first 'count' bytes of data provided by the client in the current request. If no count
parameter is provided, all data read so far is returned, which may be none unless request.get() has
previously been called with a positive count. If you cannot determine how much data to read, use
request.getLine or request.endsWith instead.

When called in a request rule for a virtual server configured to use a protocol based on UDP, such as
DNS (UDP), request.get will return the contents of the most recently received request datagram. When
called in a response rule for a virtual server using UDP, request.get will return an empty string.

Warning: you can stall a connection by asking it to read more data than the remote client will provide.
Combine this with request.getLength() or request.getLine() to reliably read data from a connection. For
HTTP, you are required to use the HTTP specific functions like http.getBody() to read the request.

Sample Usage
Get a length

$buf = request.get(4);

$l = string.bytesToInt($buf);

Now we know how much more data to ask for

$data = request.get(4 + $l);

Restrictions

Cannot be used in completion rules.

request.getBandwidthClass()

Returns the current bandwidth class for the connection to the backend node, or an empty string if no
class is set.

Sample Usage
$class = request.getBandwidthClass();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 217 of 294

Function Reference

http://www.ivanti.com/company/legal

request.getDSCP()

Returns the Differentiated Service Code Point (DSCP) field from the IP header of traffic being sent to the
server. The return value is a either the DSCP value, or -1 if it could be not obtained from the socket. The
return value is a 6-bit value.

Sample Usage
if (request.getDSCP() == 46) {

log.info("Processing Expedited traffic");

connection.setServiceLevelClass("gold");

}

request.getDestIP()

Returns the original IP address that the client attempted to connect to. This will be the same as
request.getLocalIP() unless the connection was redirected via firewall rules (e.g. using iptables on Linux)

Sample Usage
Get the local IP address, such as "10.1.4.21" or

"2001:200::8002:203:47ff:fea5:3085"

$ip = request.getDestIP();

request.getDestPort()

Returns the original network port number that the client attempted to connect to. This will be the same
as request.getLocalPort() unless the connection was redirected via firewall rules (e.g. using iptables on
Linux)

Sample Usage
Get the port number on the traffic manager,

such as 80

$port = request.getDestPort();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 218 of 294

Function Reference

http://www.ivanti.com/company/legal

request.getLength()

Returns the number of bytes of data already received from the client. This can be combined with
request.get() to reliably read data from a connection without stalling if no data is available.

Sample Usage
$data = request.get(request.getLength());

request.getLine([regex], [offset])

Returns a line of request data provided by the client. The line is terminated by the supplied regular
expression, or by '\n'. If 'offset' is provided, request.getLine() returns the data from that offset to the
terminating expression. The terminating expression is included in the returned string.

When request.getline() returns, the variable $1 is updated to point to the start of the next line in the
datastream.

You can iterate through the lines of request data by using $1 as the iterator variable.

To prevent excessive data usage, if the line ending is not found within trafficscript!memory_warning
bytes (configurable on the Global Settings page), then that many bytes will be returned.

If the regular expression is constructed from client supplied data, see the security considerations in the
"Administration System Security" chapter of the User's Guide.

Sample Usage
Process the lines in the request until an empty

line is found

$line = request.getLine("\n");

while($line != "\n") {

process $line...

$line = request.getLine("\n", $1);

}

Restrictions

Not available when the virtual server's internal protocol is 'generic streaming'.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 219 of 294

Function Reference

http://www.ivanti.com/company/legal

request.getLocalIP()

Returns the IP address that the client connected to, i.e. the address local to this machine.

Sample Usage
Get the local IP address, such as "10.1.4.21" or

"2001:200::8002:203:47ff:fea5:3085"

$ip = request.getLocalIP();

request.getLocalPort()

Returns the network port number that the client connected to. (e.g. port 80 is normal for a web server)

Sample Usage
Get the local port, such as 80

$port = request.getLocalPort();

request.getLogEnabled() - deprecated

This function has been deprecated. Use instead "requestlog.markedForInclusion()" on page 230.

Returns 1 if logging is enabled for this request, and 0 otherwise.

request.getMaxTransactionDuration()

Returns the current value of the allowed maximum duration for this transaction. If the duration has
been set by a previous call to setMaxTransactionDuration, that value will be returned, otherwise the
relevant virtual server's max_transaction_duration config key. A value of 0 means unlimited duration.

Sample Usage
$max_duration = request.getMaxTransactionDuration();

if($max_duration == 0 || $max_duration > 60) {

enforce absolute maximum for all requests:

request.setMaxTransactionDuration(60);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 220 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Can only be used with TCP-based protocols.

request.getRemoteIP()

Returns the remote IP address of the client.

Sample Usage
Get the remote IP address, such as "10.1.4.21"

or "2001:200::8002:203:47ff:fea5:3085"

$ip = request.getRemoteIP();

request.getRemotePort()

Returns the remote network port of the client's connection.

Sample Usage
Get the remote port, such as 20427

$port = request.getRemotePort();

request.getRetries()

Returns the number of times that this request has been explicitly retried by request.retry().

Sample Usage
$code = http.getResponseCode();

if($code == 404 || $code >= 500) {

if(request.getRetries() < 3) {

Avoid the current node when we retry,

if possible

request.avoidNode(connection.getNode());

request.retry();

}

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 221 of 294

Function Reference

http://www.ivanti.com/company/legal

request.getToS() - deprecated

This function has been deprecated. Use instead "request.getDSCP()" on page 218.

NOTE: RFC 2474 has superseded IP ToS values with the DSCP field. Returns the Type of Service (ToS) of
traffic going to the server. The return value is either "LOWDELAY", "THROUGHPUT", "RELIABILITY" or
"NONE".

request.isResendable()

Test if it is possible to resend this request to a different node. It is only possible to resend a request if
the entire request has been buffered up in the traffic manager, for example, by explicitly reading it in a
request rule.

If the request was streamed through to the client, for example, as a large HTTP POST, it will not have
been buffered and therefore cannot be resent.

Note that request.isResendable detects if it is possible to resend a request; request.setIdempotent can
be used to tell the traffic manager not to automatically resend a request if it fails.

Sample Usage
if(request.isResendable()) {

log.info("Retrying request");

request.retry();

}

request.retry()

Retry the request (using the currently selected pool). Load-balancing and session persistence decisions
are recalculated, and the request is resubmitted - possibly to the same node as previously, although
request.avoidNode() can prevent this.

If request.retry() is called, any request rules are not run again. When a new response is collected after
request.retry(), the response rules are run again.

The response rule can modify the request in before resubmitting it.

It is only generally possible to resend a request if the entire request was read before the request rules
completed. Otherwise, request data will have been streamed to the server and not cached. Use
request.isResendable() to test for this.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 222 of 294

Function Reference

http://www.ivanti.com/company/legal

request.getRetries() returns the number of times this request has already been tried.

On success, request.retry() does not return, but the response rules will be run again on the new
response. On failure, request.retry() returns 0. request.retry() will do nothing if used in a request rule.

Sample Usage
$code = http.getResponseCode();

if($code == 404 || $code >= 500) {

if(request.getRetries() < 3) {

Avoid the current node when we retry,

if possible

request.avoidNode(connection.getNode());

request.retry();

}

}

Restrictions

Cannot be used in completion rules.

request.sendResponse(Data)

Writes the provided data directly back to the client.

Any data that has been read is discarded, and nothing is forwarded to the back-end node. Unlike its
counterpart http.sendRequest(), this function does not terminate rule processing immediately. Instead,
it stores the provided string for sending back to the client when rule processing has finished.

If you are managing HTTP traffic the http.sendResponse() function should be used instead.

Sample Usage
Send a response

request.sendResponse("530 Login incorrect\r\n");

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 223 of 294

Function Reference

http://www.ivanti.com/company/legal

request.set(request data)

Replaces the input data read from the client with the provided string.

This is a low-level routine that should be used with care. For protocols with their own higher-level
protocol managers (e.g. HTTP), use the higher level routines to alter the input data (e.g. http.setHeader()
and http.setBody()).

Sample Usage
$data = request.get();

$data = string.regexsub($data, "From", "To", "g");

request.set($data);

Restrictions

Cannot be used in completion rules.

request.setBandwidthClass(name)

Sets the bandwidth class for the current connection to the backend node. Providing an empty class
name removes the bandwidth class from the connection. It returns zero if an error occurs (for example,
if the bandwidth class does not exist), and 1 otherwise.

Sample Usage
request.setBandwidthClass("gold customers");

Restrictions

Cannot be used in completion rules.

request.setDSCP(6-bit DSCP field)

Sets the Differentiated Service Code Point (DSCP) field in the IP packet header of traffic being sent to
the server. A 6-bit value must be provided. If successful, this function returns true, otherwise it returns
false. DSCP fields can be used by network equipment to change how they route network traffic.

Sample Usage
if (http.getHeader("X-Set-DSCP-Priority" != "")) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 224 of 294

Function Reference

http://www.ivanti.com/company/legal

request.setDSCP(0x2c);

}

Restrictions

Cannot be used in completion rules.

request.setIdempotent(resend)

Marks a request as resendable or non-resendable.

An idempotent request has no detrimental side effects, so it can safely be attempted multiple times. A
non-idempotent request has a side effect - for example, it may update a database, or initiate a
purchase.

By default, all non-HTTP requests are marked as idempotent. If a back-end node fails to generate a
correct response when a request is initially forwarded to it, an attempt will be made to resend the
request to another node. An exception to this is requests received through a virtual server using one of
the generic-type protocols. In order to be idempotent by default, an end-point to the request must first
be defined (using functions such as request.endsWith() or request.endsAt()). Only then can failures be
measured and alternative nodes tried.

request.setIdempotent() can override this behaviour. If 'resend' is zero, this indicates that the request
should only be attempted against one back-end node.

If 'resend' has a non-zero value, this indicates that if a request is made to a back-end node and a correct
response is not received, the request should be retried against another back-end node.

Note that a request cannot be resent once it has begun streaming data between the client and the
node. Additionally, UDP connections cannot be marked as resendable (the UDP client application
should handle failed UDP responses).

Sample Usage
Mark this request as resendable

request.setIdempotent(1);

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 225 of 294

Function Reference

http://www.ivanti.com/company/legal

request.setLogEnabled(enabled) - deprecated

This function has been deprecated. Use instead "requestlog.include()" on page 230.

Enables or disables logging for the current request. Note that if logging for the current virtual server is
disabled, then this function cannot currently enable it.

Returns 1 if logging is now enabled, and 0 if it is now disabled.

request.setMaxConnectionAttempts(int)

Overrides the pool's maximum number of connection attempts for this request. Connections to
different nodes will be attempted until the maximum number of attempts is exceeded or the
connection is successful. A value of 0 means unlimited attempts.

Sample Usage
if(http.getMethod() == "POST") {

This is the same as request.setIdempotent(0)

request.setMaxConnectionAttempts(1);

}

Restrictions

Can only be used with TCP-based protocols, Cannot be used in completion rules.

request.setMaxReplyTime(seconds)

Overrides the pool's max reply time for this request, also overriding the virtual server timeout if
necessary. A node must start its reply within this time or it will be timed out.

Sample Usage
if(http.getMethod() == "POST") {

Allow more time to send data to server.

request.setMaxReplyTime(60);

}

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 226 of 294

Function Reference

http://www.ivanti.com/company/legal

request.setMaxTimedOutConnectionAttempts(int)

Overrides the pool's maximum number of timed-out connection attempts for this request. If the
connection to the node fails due to max_reply_time being exceeded, connections to other nodes will be
attempted until the maximum number of attempts is exceeded or the connection is successful. A value
of 0 means unlimited attempts.

Sample Usage
if(http.getMethod() == "POST") {

request.setMaxTimedOutConnectionAttempts(2);

}

Restrictions

Can only be used with TCP-based protocols, Cannot be used in completion rules.

request.setMaxTransactionDuration(int)

Overrides the virtual server's maximum duration for this transaction. A value of 0 means unlimited
duration.

Sample Usage
$ct_len = http.getHeader("Content-Length");

if($ct_len > 1024) {

give client 10s per kB of uploaded body data

$d = 10 * $ct_len / 1024;

request.setMaxTransactionDuration($d);

} else {

use virtual server default

}

Restrictions

Can only be used with TCP-based protocols, Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 227 of 294

Function Reference

http://www.ivanti.com/company/legal

request.setRemoteIP(ipAddr)

Sets the remote IP address of the client. This function should be used with care, as it will alter what is
logged in request logs and the address seen by a back-end node in 'transparent' mode. Setting the
remote IP address in a rule will also set the reported nearest GLB location to that nearest the IP address
set, and if glb.service.getNearestLocation() is called subsequently, the location will be returned. 0 is
returned if the IP address is invalid, and 1 otherwise.

Sample Usage
Set the remote IP address, such as "10.1.4.21"

request.setRemoteIP("10.1.4.21");

request.setRemoteIP("2001:200::3085");

Restrictions

Cannot be used in completion rules.

request.setToS(Type of Service) - deprecated

This function has been deprecated. Use instead "request.setDSCP(6-bit DSCP field)" on page 224.

NOTE: RFC 2474 has superseded IP ToS values with the DSCP field. Sets the Type of Service (ToS) flags
of traffic going to the server. Valid options are "LOWDELAY", "THROUGHPUT", "RELIABILITY" or
"NONE". ToS flags may be used by network equipment to change how they route network traffic.

Restrictions

Cannot be used in completion rules.

request.setVirtualServerTimeout(seconds)

Overrides the virtual server's timeout for this request. This timeout can close connections processing
requests that are not actively sending or receiving data, except for those governed by HTTP/2-specific
configuration. A setting of zero will disable this timeout.

Sample Usage
$path = http.GetPath();

if(string.startsWith($path, "/downloads")) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 228 of 294

Function Reference

http://www.ivanti.com/company/legal

request.setVirtualServerTimeout(60);

}

Restrictions

Cannot be used in completion rules.

request.skip(count)

Removes the specified number of bytes from the start of the request provided by the client. This can be
used in combination with request.get() and request.getLine() to stream data from a client, or to alter a
request before passing it on to a server.

Successive calls to this function will remove further data.

Sample Usage
Skip the first 1K of data

request.skip(1024);

Now skip another 1K

request.skip(1024);

Restrictions

Cannot be used in completion rules.

requestlog.exclude()

Specifies that this connection should not be written to the request log upon completion. This function
can be used when the virtual server has log!save_all set to Yes to filter out unwanted connections from
the request log.

Note that log!enabled or syslog!enabled must be set to Yes on the virtual server for any connections to
be logged.

Sample Usage
Don't log requests from local IP addresses.

$ip = request.getRemoteIP();

if(string.ipmaskmatch($ip, "10.0.0.0/8")) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 229 of 294

Function Reference

http://www.ivanti.com/company/legal

requestlog.exclude();

}

requestlog.include()

Mark this connection to be added to the request log for this virtual server when it has completed.

Note that log!enabled or syslog!enabled must be set to Yes on the virtual server for any connections to
be logged.

Returns true if the connection will be logged, or false otherwise.

Sample Usage
Record when the server is particularly slow to

respond to a request

if(stats.getServerResponseTime() > 5000){

requestlog.include();

}

requestlog.markedForInclusion()

Returns whether or not this connection will be written either to the disk-based request log or to the
remote syslog upon completion.

Connections will be written to the request log only if log!enabled or syslog!enabled is set to Yes for this
virtual server and the connection has been marked for inclusion either by default, or by the
requestlog.include() function.

Sample Usage
if(requestlog.markedForInclusion()) {

http.addResponseHeader("X-Logged", "Yes");

}

resource.exists(filename)

Checks whether or not the named file exists in ZEUSHOME/zxtm/conf/extra/. If it exists 1 is returned, 0
otherwise.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 230 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Test if the file exists

if(resource.exists("myfile")) {

... process resource

}

Restrictions

Cannot be used in completion rules.

resource.get(filename)

Returns the contents of a named file stored in the ZEUSHOME/zxtm/conf/extra/ directory. If the file
doesn't exist, then an empty string is returned. Note that subdirectories of conf/extra are not supported.

Resources are pre-loaded into memory, so this call does not cause the file to be reloaded.

Sample Usage
Read the contents of the 'info' file and add them

as a new header.

http.addheader("X-Info", resource.get("info"));

Restrictions

Cannot be used in completion rules.

resource.getLines(filename)

Returns the contents of a named file stored in the ZEUSHOME/zxtm/conf/extra/ directory as an array. If
the file doesn't exist, then an empty array is returned. Note that subdirectories of conf/extra are not
supported.

Resources are pre-loaded into memory, so this call does not cause the file to be reloaded.

Sample Usage
Read the contents of the 'info' file and add

process them line-by-line

$info = resource.getLines("info");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 231 of 294

Function Reference

http://www.ivanti.com/company/legal

foreach($line in $info) {

...

}

Restrictions

Cannot be used in completion rules.

resource.getMD5(filename)

Returns the MD5 of the current contents of the file in ZEUSHOME/zxtm/conf/extra/. If the file doesn't
exist, an empty string is returned.

File MD5s are cached to speed up this call.

Sample Usage
Get the MD5 of the file

$md5 = resource.getMD5("myfile");

Restrictions

Cannot be used in completion rules.

resource.getMTime(filename)

Returns the time that the named file in ZEUSHOME/zxtm/conf/extra/ was last modified, in seconds
since the epoch (i.e. UNIX time). If the file doesn't exist, 0 is returned.

Sample Usage
Find out the time the file was last modified

$mtime = resource.getMTime("myfile");

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 232 of 294

Function Reference

http://www.ivanti.com/company/legal

response.append(response data)

Appends the provided string to the response data.

This is a low-level routine that should be used with care. For protocols with their own higher-level
protocol managers (e.g. HTTP), you must use the higher level routines to alter the input data (e.g.
http.setResponseHeader() and http.setResponseBody()).

Sample Usage
response.append(

"I always have to have the last word.");

Restrictions

Cannot be used in completion rules.

response.close()

Immediately closes the connection to the back-end node. Any response data that has already been read
from the server will be forwarded to the client, but no more response data will be read.

Your traffic manager will reconnect to a back-end node when it next needs to forward request data to it;
the back-end node is specified by either calling pool.use() or pool.select() in a request rule, or by the
default pool.

Sample Usage
if($neednewnode) {

response.close();

pool.use("servers");

}

Restrictions

Can only be used with TCP-based protocols, Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 233 of 294

Function Reference

http://www.ivanti.com/company/legal

response.flush(count)

Transfers the first count bytes of the response back to the client. These bytes are removed from the
underlying response buffer. If count is not specified, all current response data is flushed.

This function is useful in generic client- and server-first protocols, to synchronise responses with the
next request. This may be necessary if your traffic manager is likely to respond directly to some
requests, and the back-end node responds to others.

Sample Usage
keep flushing response data until we get

an empty line...

$res = response.getLine();

while($res != "\n") {

response.flush(string.len($res));

$res = response.getLine();

}

the remainder of the response buffer will be

flushed when all response rules complete

Restrictions

Can only be used with TCP-based protocols, Cannot be used in completion rules.

response.get([count])

Returns the first 'count' bytes of data provided by the server in the current response. If you do not
supply a count parameter, then the entire response will be read in.

When called in a request rule for a virtual server configured to use a protocol based on UDP, such as
SIP, response.get will return an empty string. When called in a response rule for a virtual server using
UDP, response.get will return the most recently received request datagram. When called in a
completion rule for a virtual server using UDP, response.get will return the most recently received
request datagram, if any, or an empty string if a request datagram has been received more recently than
the last response datagram, such as in a three way handshake.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 234 of 294

Function Reference

http://www.ivanti.com/company/legal

Warning: you can stall a connection by asking it to read more data than the back-end server will
provide. Combine this with response.getLength() or response.getLine() to reliably read data from a
connection. For HTTP, you must use the HTTP specific functions like http.getResponseBody() to read the
response.

Sample Usage
Get the first 1K of data

$data = response.get(1024);

response.getBandwidthClass()

Returns the current bandwidth class for the connection to the client, or an empty string if no class is set.

Sample Usage
$class = response.getBandwidthClass();

response.getDSCP()

Returns the Differentiated Service Code Point (DSCP) field from the IP header of traffic being sent to the
client. The return value is a either the DSCP value, or -1 if it could be not obtained from the socket. The
return value is a 6-bit value.

Sample Usage
if (response.getDSCP() == 46) {

log.info("Processing Expedited traffic");

connection.setServiceLevelClass("gold");

}

response.getLength()

Returns the amount of data already received from the server. This can be combined with response.get()
to reliably read data from a connection without stalling if no data is available.

Sample Usage
$data = response.get(response.getLength());

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 235 of 294

Function Reference

http://www.ivanti.com/company/legal

response.getLine([regex], [offset])

Returns a line of response data provided by the server. The line is terminated by the supplied regular
expression, or by '\n'. If 'offset' is provided, response.getLine() returns the data from that offset to the
terminating expression.

When response.getLine() returns, the variable $1 is updated to point to the start of the next line in the
datastream.

You can iterate through the lines of response data by using $1 as the iterator variable.

If the regular expression is constructed from client supplied data, see the security considerations in the
"Administration System Security" chapter of the User's Guide.

Sample Usage
Process the lines in the response until an empty

line is found

$line = response.getLine("\n");

while($line != "\n") {

process $line...

$line = response.getLine("\n", $1);

}

Restrictions

Can only be used with TCP-based protocols, Not available when the virtual server's internal protocol is
'generic streaming'.

response.getLocalIP()

Returns the local IP address of the connection to the node in use, i.e. an IP address on the local machine
that your traffic manager connected from. It returns the empty string if no connection exists.

Sample Usage
Find the IP address we connected from, such as

"10.1.4.21" or "2001:200::8002:203:30:40:3085"

$ip = response.getLocalIP();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 236 of 294

Function Reference

http://www.ivanti.com/company/legal

response.getLocalPort()

Returns the local port of the connection to the node in use, i.e. the port number on the local machine
that the traffic manager connected from. It returns 0 if there is no current connection to a node.

Sample Usage
$port = response.getLocalPort();

response.getRemoteIP()

Returns the remote IP address of the node used. If there is no current connection, it will return an empty
string.

Sample Usage
Get the IP address of the node used, such as

"10.1.4.21" or "2001:200::8002:203:a:1:3085"

$ip = response.getRemoteIP();

response.getRemotePort()

Returns the network port number on which the traffic manager connected to a node. (e.g. port 80 is
normal for a web server). If there is no current connection, it will return 0.

Sample Usage
$port = response.getRemotePort();

response.getToS() - deprecated

This function has been deprecated. Use instead "response.getDSCP()" on page 235.

NOTE: RFC 2474 has superseded IP ToS values with the DSCP field. Returns the Type of Service (ToS) of
traffic going to the client. The return value is either "LOWDELAY", "THROUGHPUT", "RELIABILITY" or
"NONE".

response.set(response data)

Sets the server response to the provided string.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 237 of 294

Function Reference

http://www.ivanti.com/company/legal

This is a low-level routine that should be used with care. For protocols with their own higher-level
protocol managers (e.g. HTTP), you must use the higher level routines to alter the input data (e.g.
http.setResponseHeader() and http.setResponseBody()).

Sample Usage
$data = response.get();

$data = string.regexsub($data,

"From: ", "To: ", "g");

response.set($data);

Restrictions

Cannot be used in completion rules.

response.setBandwidthClass(name)

Sets the bandwidth class for the current connection to the client. Providing an empty class name
removes the bandwidth class from the connection. It returns zero if an error occurs (for example, if the
bandwidth class does not exist), and 1 otherwise.

Sample Usage
response.setBandwidthClass("gold customers");

Restrictions

Cannot be used in completion rules.

response.setDSCP(6-bit DSCP field)

Sets the Differentiated Service Code Point (DSCP) field in the IP packet header of traffic being sent to
the client. A 6-bit value must be provided. If successful, this function returns true, otherwise it returns
false. DSCP fields can be used by network equipment to change how they route network traffic.

Sample Usage
if (http.getHeader("X-Set-DSCP-Priority" != "")) {

response.setDSCP(0x2c);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 238 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

response.setToS(Type of Service) - deprecated

This function has been deprecated. Use instead "response.setDSCP(6-bit DSCP field)" on the previous
page.

NOTE: RFC 2474 has superseded IP ToS values with the DSCP field. Sets the Type of Service (ToS) flags
of traffic going to the client. Valid options are "LOWDELAY", "THROUGHPUT", "RELIABILITY" or "NONE".
ToS flags may be used by network equipment to change how they route network traffic.

Restrictions

Cannot be used in completion rules.

rtsp.addRequestHeader(name, value)

Adds an RTSP header. If the header already exists, via a case-insensitive lookup, this value will be
appended to the existing value.

Sample Usage
Add a transport header

$my_header = "RTP/AVP/TCP; interleaved=0-1";

rtsp.addRequestHeader("Transport", $my_header);

Restrictions

Cannot be used in completion rules.

rtsp.addResponseHeader(name, value)

Adds an RTSP header to the RTSP response that will be sent back to the client. If the header already
exists in the response, via a case-insensitive lookup, this value will be appended to the existing value.

Sample Usage
Add a new transport header

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 239 of 294

Function Reference

http://www.ivanti.com/company/legal

$my_header = "RTP/AVP/TCP; interleaved=0-1";

rtsp.addResponseHeader("Transport", $my_header);

Restrictions

Cannot be used in completion rules.

rtsp.getMethod()

Returns the RTSP method that was used to make the request, such as SETUP or PLAY.

Sample Usage
Direct DESCRIBE requests to separate pool

if(rtsp.getMethod() == "DESCRIBE") {

set pool to Describe pool

}

rtsp.getPath()

Returns the %-decoded path in the RTSP request URL

Sample Usage
Retrieve the requested file

$file = rtsp.getPath();

rtsp.getRawURL()

Returns the raw URL data provided by the client in the first line of the RTSP request, after the method
and before the RTSP version specifier. No %-decoding is performed on the URL.

Sample Usage
$rawurl = rtsp.getRawURL();

if(string.contains($rawurl, "../")) {

Something suspicious here ...

connection.discard();

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 240 of 294

Function Reference

http://www.ivanti.com/company/legal

rtsp.getRequest()

Returns the full RTSP request and headers, but does not include any body data.

Sample Usage
Get the complete rtsp request

$request = rtsp.getRequest();

rtsp.getRequestBody([count])

Returns the body data of the request.

If the optional 'count' parameter is supplied, rtsp.getRequestBody() will only read and return this
number of bytes. If count is 0, rtsp.getRequestBody() returns the entire request.

If the request has no body, then this returns an empty string. This function is not useable in response
rules, as the body data of the request will no longer be accessible.

Sample Usage
Read the entire request body

$body = rtsp.getRequestBody();

Restrictions

Cannot be used in completion rules.

rtsp.getRequestBodyLines(count)

Splits the body data of the RTSP request into individual lines and returns an array of the data.

If the request has no body, then this returns an empty array.

Sample Usage
Read the entire request body

$body = rtsp.getRequestBodyLines();

Process it line-by-line

foreach($line in $body) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 241 of 294

Function Reference

http://www.ivanti.com/company/legal

...

}

Restrictions

Cannot be used in completion rules.

rtsp.getRequestHeader(name)

Returns the value of a named RTSP header in the RTSP request, or the empty string if the header does
not exist. The header name lookup is case-insensitive.

Sample Usage
Get the transport detail

$transport = rtsp.getRequestHeader("Transport");

rtsp.getRequestHeaderNames() - deprecated

This function has been deprecated. Use instead "rtsp.listRequestHeaderNames()" on page 245.

Returns a list of all the headers that are present in the request.

The headers are returned as a single string, separated by spaces.

rtsp.getRequestHeaders()

Returns a hash containing all the header names in the request mapped to their values.

Sample Usage
Show all the headers in the request

$headers = rtsp.getRequestHeaders();

foreach($header in hash.keys($headers)) {

log.info($header . "=" . $headers[$header]);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 242 of 294

Function Reference

http://www.ivanti.com/company/legal

rtsp.getResponse()

Returns the full RTSP response and headers, but does not include any body data.

Sample Usage
Get the complete rtsp response

$request = rtsp.getResponse();

rtsp.getResponseBody([count])

Returns the body of the RTSP response. This could be an SDP response.

If the optional 'count' parameter is provided, rtsp.getResponseBody() will read and return the first
'count' bytes of the response. If count is 0, rtsp.getResponseBody() will return the entire response.

Sample Usage
Read the entire response body

$body = rtsp.getResponseBody();

Restrictions

Cannot be used in completion rules.

rtsp.getResponseBodyLines(count)

Splits the body data of the RTSP request into individual lines and returns an array of the data.

If the request has no body, then this returns an empty array.

Sample Usage
Read the entire request body

$body = rtsp.getResponseBodyLines();

Process it line-by-line

foreach($line in $body) {

...

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 243 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

rtsp.getResponseCode()

Returns the status code from the first line of the RTSP response.

Sample Usage
Is the status '200'

if(rtsp.getResponseCode() == 200) {

...

}

rtsp.getResponseHeader(name)

Returns the value of a RTSP header in the RTSP response, or the empty string if the header does not
exist. The header name lookup is case-insensitive.

Sample Usage
Get the transport header

$transport = rtsp.getResponseHeader("Transport");

rtsp.getResponseHeaderNames() - deprecated

This function has been deprecated. Use instead "rtsp.listResponseHeaderNames()" on the next page.

Returns a list of all the headers that are present in the response.

The headers are returned as a single string, separated by spaces.

rtsp.getResponseHeaders()

Returns a hash containing all the header names in the response mapped to their values.

Sample Usage
Show all the headers in the response

$headers = rtsp.getResponseHeaders();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 244 of 294

Function Reference

http://www.ivanti.com/company/legal

foreach($header in hash.keys($headers)) {

log.info($header . "=" . $headers[$header]);

}

rtsp.getVersion()

Returns the version of the RTSP protocol being used. It returns the version string in the RTSP/version
specifier in the first line of the RTSP request, such as 'RTSP/1.0'.

Sample Usage
Get the RTSP version

$version = rtsp.getVersion();

rtsp.listRequestHeaderNames()

Returns a list of all the headers that are present in the request.

The headers are returned as a an array.

Sample Usage
Log all of the header names and values

$headers = rtsp.listRequestHeaderNames();

foreach($header in $headers) {

log.info($header . "=" .

rtsp.getRequestHeader($header));

}

rtsp.listResponseHeaderNames()

Returns a list of all the headers that are present in the response.

The headers are returned as an array.

Sample Usage
Log all of the header names and values

$headers = rtsp.listResponseHeaderNames();

foreach($header in $headers) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 245 of 294

Function Reference

http://www.ivanti.com/company/legal

log.info($header . "=" .

rtsp.getRequestHeader($header));

}

rtsp.redirect(path)

Sends back an RTSP 302 redirect response, which will send the client to a different URL. This is
equivalent to rtsp.sendResponse("302 Moved Temporarily", "", "Location: " . $url);

Sample Usage
Redirect requests for a particular file elsewhere

$path = rtsp.getPath();

if($path == "specialfile") {

rtsp.redirect("rtsp://otherserver/" . $path);

}

Restrictions

Cannot be used in completion rules.

rtsp.removeRequestHeader(name)

Removes an RTSP header if it exists in the request. The header name lookup is case-insensitive.

Sample Usage
Remove the transport header

rtsp.removeRequestHeader("Transport");

Restrictions

Cannot be used in completion rules.

rtsp.removeResponseHeader(name)

Removes a RTSP header from the RTSP response. The header name is automatically translated to the
correct case.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 246 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Remove the GET_PARAMETER header

rtsp.removeResponseHeader("GET_PARAMETER");

Restrictions

Cannot be used in completion rules.

rtsp.requestHeaderExists(names)

Reports if a header exists or not. It is similar to rtsp.getRequestHeader(), but makes it possible to
distinguish between a header not being present and a header having no value.

The header name lookup is case-insensitive.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage
Check for the Transport header

if(rtsp.requestHeaderExists("Transport")) {

Modify the transport options

}

rtsp.responseHeaderExists(name)

Reports if a named header exists in the RTSP response. It is similar to rtsp.getResponseHeader(), but
makes it possible to distinguish between a header not being present and a header having no value.

The header name lookup is case-insensitive.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage
Test for the 'Transport' response header

if(rtsp.responseHeaderExists("Transport")) {

modify the parameters

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 247 of 294

Function Reference

http://www.ivanti.com/company/legal

rtsp.sendResponse(code, body, headers)

Sends back an RTSP response to the client instead of balancing the request via a pool onto a node. It
generates a correct RTSP response from the response code, body data and headers supplied. Multiple
headers should be separated with \r\n.

Sample Usage
Discard SET_PARAMETER requests if the server

does not support it

if(rtsp.getMethod() == "SET_PARAMETER") {

rtsp.sendResponse("401 Unauthorised", "", "");

}

Restrictions

Cannot be used in completion rules.

rtsp.setMethod(method)

Sets the RTSP method to use when forwarding the request via a pool to a node.

Sample Usage
Force the client to send an OPTIONS packet

rtsp.setMethod("OPTIONS");

Restrictions

Cannot be used in completion rules.

rtsp.setPath(url)

Replaces the Path portion of the request URL with the supplied value.

Sample Usage
Make customer view specific file:

rtsp.setPath("myvideo.rm");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 248 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Cannot be used in completion rules.

rtsp.setRequestBody(body)

Sets the request body for this RTSP request, replacing any request body already present.

This also updates the 'Content-Length' header in the request to the length of the new body data.

Sample Usage
$body = rtsp.getRequestBody(0);

$body = string.regexsub($body, "Buy", "Sell", "g");

rtsp.setRequestBody($body);

Restrictions

Cannot be used in completion rules.

rtsp.setRequestHeader(name, value)

Sets the value of a RTSP header, replacing any existing value if the header already exists.

Note that this function should not be used with the Connection header, i.e. setRequestHeader
("Connection", value) since it may not give the expected results.

The header name lookup is case-insensitive.

Sample Usage
Replace the transport header

$my_header = "RTP/AVP/TCP; interleaved=0-1";

rtsp.setRequestHeader("Transport", $my_header);

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 249 of 294

Function Reference

http://www.ivanti.com/company/legal

rtsp.setResponseBody(body)

Sets the response body for this RTSP response, replacing any response body already present.

This also updates the 'Content-Length' header in the response to the length of the new body data. If the
server is still sending the original response body when this function is called, the connection to the
server will be harmlessly dropped.

Sample Usage
$body = rtsp.getResponseBody(0);

$body = string.regexsub($body, "Buy", "Sell", "g");

rtsp.setResponseBody($body);

Restrictions

Cannot be used in completion rules.

rtsp.setResponseCode(code, [message])

Sets the status code and message in the first line of the RTSP response.

Sample Usage
Stop clients receiving a particular file

$path = rtsp.getPath();

if($path == "specialfile") {

rtsp.setResponseCode("401", "Unauthorised");

}

Restrictions

Cannot be used in completion rules.

rtsp.setResponseHeader(name, value)

Sets a RTSP header in the RTSP response that will be sent back to the client. If the header already exists
in the response, via a case-insensitive lookup, it will be replaced with this new value.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 250 of 294

Function Reference

http://www.ivanti.com/company/legal

Note that this function should not be used with the Connection header, i.e. setResponseHeader
("Connection", value) since it may not give the expected results.

Sample Usage
Replace the transport header

$my_header = "RTP/AVP/TCP; interleaved=0-1";

rtsp.setResponseHeader("Transport", $my_header);

Restrictions

Cannot be used in completion rules.

rule.getName()

Returns the name of the currently executing rule.

Sample Usage
$rulename = rule.getname();

rule.getState()

Returns the state of the currently executing rule, either "REQUEST", "RESPONSE", "COMPLETION" or
"GLBRESPONSE".

Sample Usage
$rulestate = rule.getstate();

sip.addRequestHeader(name, value, at_top)

Modifies the current SIP request, adding a SIP header with the supplied value. If the header already
exists, then this value will be appended to the existing value. If at_top is set then the value will be
prepended to the header. The header name lookup is case-insensitive.

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 251 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Add a priority header if it is missing

if(!sip.requestHeaderExists("Priority")) {

sip.addRequestHeader("Priority", "normal", 0);

}

Restrictions

Cannot be used in completion rules.

sip.addResponseHeader(name, value, at_top)

Adds a header to the SIP response that will be sent back to the client. If the header already exists in the
response, via a case-insensitive lookup, then this value will be appended to the existing value. If at_top
is set then the value will be prepended to the existing value.

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

Sample Usage
Use an internal webpage to see if the callee is

logged into their system

$loggedin = http.request.get(

"http://internal.example.com/".

"lookupuser=bob");

if($loggedin = "No") {

Set a warning if they are not

sip.addResponseHeader("Warning",

"399 example.com User is not logged in. ".

" Your call might not be answered.", 0);

}

Restrictions

Cannot be used in completion rules.

sip.getMethod()

Returns the SIP method that was used to make the request, such as INVITE or REGISTER.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 252 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Direct REGISTER requests to Registrar

if(sip.getMethod() == "REGISTER") {

set pool to Registrar pool

}

sip.getRequest()

Returns the full SIP request and headers, but does not include any body data.

Sample Usage
Get the full SIP headers

$request = sip.getRequest();

sip.getRequestBody()

Returns the data contained in the body of the request.

Sample Usage
Get the inbound Session Description to check for

unsupported content

if(sip.getMethod() == "INVITE") {

$body = sip.getRequestBody();

inspect packet body

}

Restrictions

Cannot be used in completion rules.

sip.getRequestBodyLines()

Splits the body data of the SIP request into individual lines and returns an array of the data.

If the request has no body, then this returns an empty array.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 253 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Read the request body

$body = sip.getRequestBodyLines();

See if it's an SDP

if(string.startswith($body[0], "v=0")) {

Process SDP data

}

Restrictions

Cannot be used in completion rules.

sip.getRequestHeader(name)

Returns the named SIP header in the SIP request, or the empty string if the header does not exist. The
header name lookup is case-insensitive.

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

Sample Usage
Get information about the UAC

originating this request

$uac = sip.getRequestHeader("User-Agent");

this returns the same value

$uac = sip.getRequestHeader("user-agent");

sip.getRequestHeaderNames() - deprecated

This function has been deprecated. Use instead "sip.listRequestHeaderNames()" on page 258.

Returns a list of all the headers that are present in the request.

The headers are returned as a single string, separated by spaces.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 254 of 294

Function Reference

http://www.ivanti.com/company/legal

sip.getRequestHeaders()

Returns a hash containing all the header names in the request mapped to their values.

Sample Usage
Show all the headers in the request

$headers = sip.getRequestHeaders();

foreach($header in hash.keys($headers)) {

log.info($header . "=" . $headers[$header]);

}

sip.getRequestURI()

Returns the target of the SIP request.

Sample Usage
Check a status file to see if this user

wants to accept calls.

if(sip.getRequestURI() == "sip:bob@example.com") {

see if this user is available

$status = http.request.get(

"http://www.example.com/status.cgi?user=bob");

if($status != "available") {

sip.sendResponse("486",

"User is currently " . $status);

}

}

sip.getResponse()

Returns the full SIP response and headers, but does not include any body data.

Sample Usage
Get the full SIP headers

$request = sip.getResponse();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 255 of 294

Function Reference

http://www.ivanti.com/company/legal

sip.getResponseBody()

Returns the session description of the SIP response.

Sample Usage
Read the entire response body

$sdp = sip.getResponseBody();

Restrictions

Cannot be used in completion rules.

sip.getResponseBodyLines()

Splits the body data of the SIP response into individual lines and returns an array of the data.

If the response has no body, then this returns an empty array.

Sample Usage
Get the response body

$sdp = sip.getResponseBodyLines();

Process it line-by-line

foreach($line in $sdp) {

...

}

Restrictions

Cannot be used in completion rules.

sip.getResponseCode()

Returns the status code from the first line of the SIP response.

Sample Usage
Is the status '200'

if(sip.getResponseCode() == 200) {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 256 of 294

Function Reference

http://www.ivanti.com/company/legal

...

}

sip.getResponseHeader(name)

Returns the value of a header in the SIP response, or the empty string if the header does not exist. The
header name lookup is case-insensitive.

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

Sample Usage
Get the route all future requests will take

$rr = sip.getResponseHeader("Record-Route");

sip.getResponseHeaderNames() - deprecated

This function has been deprecated. Use instead "sip.listResponseHeaderNames()" on the next page.

Returns a list of all the headers that are present in the response.

The headers are returned as a single string, separated by spaces.

sip.getResponseHeaders()

Returns a hash containing all the header names in the response mapped to their values.

Sample Usage
Show all the headers in the response

$headers = sip.getResponseHeaders();

foreach($header in hash.keys($headers)) {

log.info($header . "=" . $headers[$header]);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 257 of 294

Function Reference

http://www.ivanti.com/company/legal

sip.getVersion()

Returns the version of the SIP protocol being used. It returns the version string in the SIP/version
specifier in the first line of the SIP request, such as 'SIP/2.0'.

Sample Usage
Get the SIP version

$version = sip.getVersion();

sip.listRequestHeaderNames()

Returns a list of all the headers that are present in the request.

The headers are returned as an array.

Sample Usage
Log all of the header names and values

$headers = sip.listRequestHeaderNames();

foreach($header in $headers) {

log.info($header . "=" .

sip.getRequestHeader($header));

}

sip.listResponseHeaderNames()

Returns a list of all the headers that are present in the response.

The headers are returned as an array.

Sample Usage
Log all of the header names and values

$headers = sip.listResponseHeaderNames();

foreach($header in $headers) {

log.info($header . "=" .

sip.getResponseHeader($header));

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 258 of 294

Function Reference

http://www.ivanti.com/company/legal

sip.redirect(contact)

Sends back a 302 Moved Temporarily response. This response instructs the client to retry the request at
the new address(es) given in the 'contact' parameter. This is equivalent to sip.sendResponse("302",
"Moved Temporarily", "Contact: " . $uri, "");

Sample Usage
Example's offices are closed, redirect all their

calls to voicemail.

$user = sip.getRequestURI();

if(string.EndsWith($user, "@example.com")) {

$username = string.left($user,

string.find($user, "@"));

$contact = $username . "@voicemail.example.com";

sip.redirect($contact);

}

Restrictions

Cannot be used in completion rules.

sip.removeRequestHeader(name)

Removes a header if it exists in the request. The header name lookup is case-insensitive.

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

Sample Usage
Filter out any custom alert tones that have

been specified by the client

sip.removeRequestHeader("Alert-Info");

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 259 of 294

Function Reference

http://www.ivanti.com/company/legal

sip.removeResponseHeader(name)

Removes a header from the SIP response.

The header name lookup is case-insensitive. You can specify the long or short form of the header name,
so 'Via' and 'v' will both match the Via header field.

Sample Usage
Remove the server header, if it exists, to avoid

application-specific exploits being used

sip.removeResponseHeader("Server");

Restrictions

Cannot be used in completion rules.

sip.requestHeaderExists(name)

Reports if a named header exists or not. It is similar to sip.getRequestHeader(), but makes it possible to
distinguish between a header not being present and a header having no value.

The header name lookup is case-insensitive.

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage
Add a Priority header if it is missing

if(!sip.requestHeaderExists("Priority")) {

sip.addRequestHeader("Priority", "normal", 0);

}

sip.responseHeaderExists(name)

Reports if a named header exists in the SIP response. It is similar to sip.getResponseHeader(), but makes
it possible to distinguish between a header not being present and a header having no value.

The header name lookup is case-insensitive.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 260 of 294

Function Reference

http://www.ivanti.com/company/legal

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage
Test for the 'Warning' response header

if(sip.responseHeaderExists("Warning")) {

...

}

sip.sendResponse(code, reason, [headers], [body])

Sends back a SIP response to the client instead of balancing the request via a pool onto a node. The
Statue-Line of the response has the form: SIP/2.0 code reason Via, Record-Route, From, To, CSeq, Call-
ID and Content-Length headers are automatically added to the response. Any headers supplied in the
headers parameter will also be added to the response. Multiple headers must be separated by \r\n. Any
body data specified is appended to the response.

Sample Usage
Send Forbidden response if the user is blacklisted

$contact = sip.getRequestHeader("Contact");

if(string.contains($contact, "10.234.12.42")) {

sip.sendResponse("403", "Forbidden");

}

Restrictions

Cannot be used in completion rules.

sip.setMethod(method)

Sets the SIP method to use when forwarding the request via a pool to a node.

Sample Usage
Force non-standard PING requests to become OPTIONS

if(sip.getMethod() == "PING") {

sip.setMethod("OPTIONS");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 261 of 294

Function Reference

http://www.ivanti.com/company/legal

sip.setRequestHeader("Max-Forwards", "1");

}

Restrictions

Cannot be used in completion rules.

sip.setRequestBody(body)

Sets the request body for this SIP request to the supplied string, replacing any request body already
present.

This also updates the 'Content-Length' header in the request to the length of the new body data.

Sample Usage
$body = sip.getRequestBody();

Forward all data from the server through an

intermediate machine

$body = string.regexsub($body, request.getRemoteIP(),

"192.168.9.100", "g");

sip.setRequestBody($body);

Restrictions

Cannot be used in completion rules.

sip.setRequestHeader(name, value)

Sets a SIP header, replacing any existing value if the header already exists.

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

Sample Usage
Add a reference to an information page about

a known company when a call is received from

them, and an icon to help identify them.

if(sip.getRequestHeader("Organization")

== "Zeus") {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 262 of 294

Function Reference

http://www.ivanti.com/company/legal

sip.setRequestHeader("Call-Info",

"<http://www.example.com/" .

"assets/img/logo.gif> ;purpose=icon,".

"<http://www.example.com/" .

"about/> ;purpose=info"

);

}

Restrictions

Cannot be used in completion rules.

sip.setRequestURI(uri)

Sets the target of the SIP request.

Sample Usage
If the user has recently changed username, rewrite

requests that address their old username.

if(sip.getRequestURI() == "sip:jond@example.com") {

sip.setRequestURI("sip:jdoe@example.com");

}

Restrictions

Cannot be used in completion rules.

sip.setResponseBody(body)

Sets the response body for this SIP response, replacing any response body already present.

This also updates the 'Content-Length' header in the response to the length of the new body data. If the
server is still sending the original response body when this function is called, the connection to the
server will be harmlessly dropped.

Sample Usage
$body = sip.getResponseBody();

Forward all data from the client through an

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 263 of 294

Function Reference

http://www.ivanti.com/company/legal

intermediate machine

$body = string.regexsub($body,

"c=.*",

"c=IN IP4 "

."192.168.9.100",

"g");

sip.setResponseBody($body);

Restrictions

Cannot be used in completion rules.

sip.setResponseCode(code, [message])

Sets the status code and message in the first line of the SIP response.

Sample Usage
Redirect client to a backup server if the proxy

has an internal error.

if(sip.getResponseCode() == "500") {

sip.setResponseHeader("Contact",

"sip:backup.example.com");

sip.setResponseCode("305", "Use Proxy");

}

Restrictions

Cannot be used in completion rules.

sip.setResponseHeader(name, value)

Sets a header in the SIP response that will be sent back to the client. If the header already exists in the
response, via a case-insensitive lookup, then it will be replaced with this new value.

You can specify the long or short form of the header name, so 'Via' and 'v' will both match the Via
header field.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 264 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Change the server string

sip.setResponseHeader("Server",

"Pulse Secure vTM 10.1 (Linux/i386)");

Restrictions

Cannot be used in completion rules.

slm.conforming([class name])

Returns the current percentage of requests that are meeting the Service Level Monitoring objectives. If
no class name is provided, it will use the SLM class currently associated with this connection; if no SLM
class is associated with this connection, it returns 100.

Sample Usage
If the Gold customers are starting to get slow,

gradually reroute other services...

$conforming = slm.conforming("gold requests");

if(($level == "bronze" && $conforming < 70) ||

($level == "silver" && $conforming < 50)) {

tell lower value customers to come back later to

reduce load on back-end node to ensure premium

customers get good response

http.sendResponse("302", "text/html", "",

"Location: /toobusy.html");

}

if($conforming < 80 && $level != "gold") {

slow down rate of responding to non-premium

customers

connection.sleep(500);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 265 of 294

Function Reference

http://www.ivanti.com/company/legal

slm.isOK([class_name])

Returns whether a particular Service Level Monitoring class is meeting its objectives. If no class name is
provided, it will use the SLM class currently associated with this connection; if no SLM class is associated
with the connection, it returns 1. This function is a convenience shorthand for 'slm.conforming() >
slm.threshold()'.

Sample Usage
If the search nodes are under-utilised, use this

spare capacity to process web page requests too

if(slm.isOK("search-nodes")) {

pool.use("search+web nodes");

} else {

pool.use("web nodes");

}

slm.threshold([class_name])

returns the value of the serious_threshold setting in the given SLM class. If no class name is provided, it
will use the SLM class currently associated with this connection; if no SLM class is associated with the
connection, it returns 0.

Sample Usage
If we are within 10% of our threshold, divert a

portion of traffic elsewhere. If we are less than

25% below of our threshold, take evasive action to

get our site's end user experience under control!

if(slm.conforming() < slm.threshold()*0.75) {

evasive action!

log.warn(

"Site performance requires evasive action");

if($level == "bronze") {

send away low priority traffic

http.sendResponse("302", "text/html", "",

"Location: /toobusy.html");

} else if($level == "silver") {

slow down processing of medium traffic

connection.sleep(500);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 266 of 294

Function Reference

http://www.ivanti.com/company/legal

} else if($level == "gold") {

use reserved bandwidth QoS

response.setBandwidthClass(

"premium reserved bandwidth");

}

} else if(slm.conforming() < slm.threshold()*1.1) {

getting slow to the danger level; start

proactive traffic management

if($customer != "gold") {

pool.use("non-priority-nodes");

}

}

ssl.clientCert()

Returns the PEM encoded client certificate, or the empty string if the connection was not SSL-encrypted
or if a certificate was not supplied.

Sample Usage
Display the client certificate data

$cert = ssl.clientCert();

log.info("Certificate: " . $cert);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertAlgorithm()

If the connection is SSL-encrypted and the client has supplied a valid certificate, then this returns either
"rsaEncryption", "md2withRSAEncryption", "md5withRSAEncryption", "sha1withRSAEncryption", "RSA",
"sha256withRSAEncryption", "sha384withRSAEncryption", "sha512withRSAEncryption", "DSA with SHA-
1", "DSA with SHA-224", "DSA with SHA-256", "ECDSA with SHA-1", "ECDSA with SHA-224", "ECDSA
with SHA-256", "ECDSA with SHA-384", or "ECDSA with SHA-512" depending on the certificate's
encryption and hash algorithms. Otherwise, it returns the empty string.

Sample Usage
Display the client certificate algorithm

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 267 of 294

Function Reference

http://www.ivanti.com/company/legal

$alg = ssl.clientCertAlgorithm();

log.info("Certificate alg: ".$alg);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertChain()

Returns a multi-line string, with each line being the PEM encoding of a certificate in the chain from the
client, or the empty string if the connection was not SSL-encrypted or if a certificate was not supplied.

Sample Usage
Display the client certificate data

$cert = ssl.clientCertChain();

log.info("Certificate Chain: " . $cert);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertCommonName()

Returns the common name of the client certificate, or the empty string if the connection was not SSL-
encrypted or if a certificate was not supplied.

Sample Usage
$common_name = ssl.clientCertCommonName();

log.info("Certificate common name: ".$common_name);

Restrictions

Can only be used with TCP-based protocols.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 268 of 294

Function Reference

http://www.ivanti.com/company/legal

ssl.clientCertEndDate()

If the connection is SSL-encrypted and the client has supplied a valid certificate, then this returns the
date when the certificate is no longer valid. The date is an integer, representing seconds since the
epoch.

Otherwise, this function returns 0.

Sample Usage
Display the client certificate end date

$end = ssl.clientCertEndDate();

log.info("Certificate is valid until ".

sys.timeToString($end));

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertHash()

Returns a hex-encoded MD5 hash of the client certificate, or the empty string if the connection was not
SSL-encrypted, if a certificate was not supplied or if the MD5 algorithm is unavailable (e.g. when
operating in FIPS Mode).

Sample Usage
Display the client certificate hash

$hash = ssl.clientCertHash();

log.info("Certificate hash: ".$hash);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertIssuer()

Returns a string representing the issuer of the client certificate, or the empty string if the connection
was not SSL-encrypted or if a certificate was not supplied.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 269 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
Display the client certificate issuer

$issuer = ssl.clientCertIssuer();

log.info("Certificate issuer: ".$issuer);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertPublicKey()

Returns a string representation of the public key of the client certificate, or the empty string if the
connection was not SSL-encrypted or if a certificate was not supplied.

Sample Usage
Display the client certificate key

$key = ssl.clientCertPublicKey();

log.info("Certificate key: ".$key);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertSHA1()

Returns a hex-encoded SHA1 fingerprint of the client certificate, or the empty string if the connection
was not SSL-encrypted or if a certificate was not supplied.

Sample Usage
Display the client certificate SHA1 fingerprint

$sha1 = ssl.clientCertSHA1();

log.info("Certificate SHA1 fingerprint: " . $sha1);

Restrictions

Can only be used with TCP-based protocols.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 270 of 294

Function Reference

http://www.ivanti.com/company/legal

ssl.clientCertSerial()

Returns the serial (in hex) of the client certificate, or the empty string if the connection was not SSL-
encrypted or if a certificate was not supplied.

Sample Usage
Display the client certificate serial

$serial = ssl.clientCertSerial();

log.info("Certificate serial: ".$serial);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertSerialDec()

Returns the serial (in decimal) of the client certificate, or the empty string if the connection was not SSL-
encrypted or if a certificate was not supplied.

Sample Usage
Display the client certificate serial in decimal

$serial = ssl.clientCertSerialDec();

log.info("Certificate serial: ".$serial);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertStartDate()

If the connection is SSL-encrypted and the client has supplied a valid certificate, then this returns the
date when the certificate became valid. The date is an integer, representing seconds since the epoch.

Otherwise, this function returns 0.

Sample Usage
Display the client certificate start date

$start = ssl.clientCertStartDate();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 271 of 294

Function Reference

http://www.ivanti.com/company/legal

log.info("Certificate is valid from ".

sys.timeToString($start));

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertStatus()

Returns 'OK' if the client certificate is valid, or 'NoClientCert' if it was missing or not valid. It returns the
empty string if the connection was not SSL-encrypted.

Sample Usage
if(ssl.clientCertStatus() != "OK") {

Handle missing client certificate ...

}

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCertSubject()

Returns a string representing the subject of the client certificate, or the empty string if the connection
was not SSL-encrypted or if a certificate was not supplied.

Sample Usage
Display the client certificate subject

$subject = ssl.clientCertSubject();

log.info("Certificate subject: ".$subject);

Restrictions

Can only be used with TCP-based protocols.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 272 of 294

Function Reference

http://www.ivanti.com/company/legal

ssl.clientCertVersion()

Returns "1", "2" or "3" denoting the version of the client certificate, or the empty string if the connection
was not SSL-encrypted or if a certificate was not supplied.

Sample Usage
Display the client certificate version

$version = ssl.clientCertVersion();

log.info("Certificate version: ".$version);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientCipher()

Returns the cipher used by the client to SSL-encrypt the connection. It returns an empty string if the
connection was not SSL-encrypted.

The string returned contains the cipher algorithm, SSL version and effective cipher strength, such as:

SSL_RSA_WITH_AES_128_GCM_SHA256, version=TLSv1.2, bits=128

Sample Usage
Get the encryption cipher

$cipher = ssl.clientCipher();

log.info("Encrypted with ".$cipher);

Restrictions

Can only be used with TCP-based protocols.

ssl.clientSupportsSecureRenegotiation()

Returns true if the client is RFC 5746 compliant, else false. Note that connections made with TLS 1.3 will
not allow renegotiation, and that the HTTP/2 protocol also forbids renegotiation.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 273 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
if(ssl.isSSL()) {

gather statistics about client-side support

for RFC 5746

if(ssl.clientSupportsSecureRenegotiation()) {

counter.increment(1);

} else {

counter.increment(2);

}

}

Restrictions

Can only be used with TCP-based protocols.

ssl.clientTrustedCA()

Returns the name of a CA certificate configured in the list of client_cas that was used to trust the client
certificate sent in response to a certificate request, or the empty string if the connection was not SSL-
encrypted, a certificate was not supplied, or if the client_cas list was empty.

Sample Usage
See which CA trusted the client certificate

$ca = ssl.clientTrustedCA();

log.info("Client Certificate trusted by: " . $ca);

Restrictions

Can only be used with TCP-based protocols.

ssl.getClientCloseAlert()

Check whether your traffic manager will send the SSL client an SSL close alert prior to terminating the
TCP connection. The function will return a value of 1 if close alerts are enabled, and 0 if they are
disabled. The function will return -1 if the client-side connection is not established, or is not an SSL
connection.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 274 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
if(ssl.isSSL()) {

$alert = ssl.getClientCloseAlert();

log.info("client close alert: " . $alert);

}

Restrictions

Can only be used with TCP-based protocols.

ssl.getServerCloseAlert()

Check whether your traffic manager will send the SSL server an SSL close alert prior to terminating the
TCP connection. The function will return a value of 1 if close alerts are enabled, and 0 if they are
disabled. The function will return -1 if the connection is not an SSL connection, or if the server-side
connection is not yet established (i.e. it should typically only be used in response rules.)

Sample Usage
if(ssl.isSSL()) {

$alert = ssl.getServerCloseAlert();

log.info("server close alert: " . $alert);

}

Restrictions

Can only be used with TCP-based protocols.

ssl.getTLSServerName()

Returns the hostname provided by the client using the TLS 1.0 'server_name' extension. If this
connection is not using SSL decryption or the client did not use the extension then this function returns
the empty string.

Sample Usage
$name = ssl.getTLSServerName();

log.info("The client provided " .

"the server name: " . $name);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 275 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Can only be used with TCP-based protocols.

ssl.isSSL()

Returns 1 if this connection from the remote client was SSL encrypted and your traffic manager has
decrypted the traffic. Otherwise, it returns 0.

Sample Usage
if(ssl.isSSL()) {

This is an SSL-encrypted connection ...

}

Restrictions

Can only be used with TCP-based protocols.

ssl.requestCert()

Initiates an SSL renegotiation with the client, requesting a certificate. Even if the client fails to provide a
certificate, rule processing continues after the re-handshake is complete. If the client had already
provided a certificate, this function does nothing and rule processing continues. If the underlying
connection is not SSL, the transaction is aborted (i.e., this is interpreted as a failed re-handshake). If the
connection is made at TLS version 1.3 renegotiation is not available and the connection will be closed. If
the underlying connection is HTTP/2, renegotiation is not attempted. (i.e. this function has no effect).
Secure renegotiation is forbidden by HTTP/2. Note that using this function overrides the setting
ssl!allow_rehandshake. It is strongly recommended to check for client-side support of RFC 5746 before
using it, see ssl.clientSupportsSecureRenegotiation.

Sample Usage
$path = http.getPath();

if(string.startsWith($path, "/admin")) {

Only let certain people see this data ...

if(ssl.clientSupportsSecureRenegotiation()) {

ssl.requestCert();

if(ssl.clientCertStatus() != "OK") {

http.sendResponse(403, "text/plain",

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 276 of 294

Function Reference

http://www.ivanti.com/company/legal

"Valid SSL credentials are required",

"");

} else {

allow the original request to

continue, client provided an

acceptable certificate.

break;

}

} else {

http.sendResponse(403, "text/plain",

"Client certificate authentication ".

"required", "");

}

}

Restrictions

Can only be used with TCP-based protocols, Cannot be used in completion rules.

ssl.requireCert()

Initiates an SSL renegotiation with the client, requiring a certificate. If the client fails to provide a valid
cert, the connection is closed with an SSL alert of type handshake_failure. Otherwise, rule processing
continues after the re-handshake is complete. If the client had already provided a certificate, this
function does nothing and rule processing continues. If the underlying connection is not SSL, the
transaction is aborted (i.e., this is interpreted as a failed re-handshake). If the connection is made at TLS
version 1.3 renegotiation is not available and the connection will be closed. If the underlying connection
is HTTP/2, the transaction is aborted, and the client is sent the error HTTP_1_1_REQUIRED. Secure
renegotiation is forbidden by HTTP/2. Note that using this function overrides the setting ssl!allow_
rehandshake. It is strongly recommended to check for client-side support of RFC 5746 before using it,
see ssl.clientSupportsSecureRenegotiation.

Sample Usage
$path = http.getPath();

if(string.startsWith($path, "/admin")) {

Only let certain people see this data ...

if(ssl.clientSupportsSecureRenegotiation()) {

ssl.requireCert();

} else {

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 277 of 294

Function Reference

http://www.ivanti.com/company/legal

http.sendResponse(403, "text/plain",

"Client certificate authentication ".

"required", "");

}

}

Restrictions

Can only be used with TCP-based protocols, Cannot be used in completion rules.

ssl.serverCert()

Returns a PEM encoded version of the entire certificate being used by your traffic manager for this
connection. If this virtual server is not using SSL decryption then this function will return the empty
string.

Sample Usage
$cert = ssl.serverCert();

log.info("Server certificate: " . $cert);

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertAlgorithm()

Returns a description of the algorithms being used by the virtual server's current certificate. This will
either be "rsaEncryption", "md2withRSAEncryption", "md5withRSAEncryption",
"sha1withRSAEncryption", "RSA", "sha256withRSAEncryption", "sha384withRSAEncryption",
"sha512withRSAEncryption", "DSA with SHA-1", "DSA with SHA-224", "DSA with SHA-256", "ECDSA with
SHA-1", "ECDSA with SHA-224", "ECDSA with SHA-256", "ECDSA with SHA-384" or "ECDSA with SHA-
512". If this virtual server is not using SSL decryption (or the algorithm type is not recognised) then this
function will return the empty string.

Sample Usage
$alg = ssl.serverCertAlgorithm();

log.info("Server cert algorithm: " . $alg);

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 278 of 294

Function Reference

http://www.ivanti.com/company/legal

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertCommonName()

Returns the common name of the certificate being used by your traffic manager for this connection. If
this virtual server is not using SSL decryption then this function will return the empty string.

Sample Usage
$common_name = ssl.serverCertCommonName();

if(http.getHostHeader() != $common_name) {

log.warn("Client browser may report certificate".

" as invalid.");

}

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertEndDate()

Returns the date that the certificate being used by your traffic manager for this connection became
valid. The date is an integer, representing the number of seconds since the epoch. If this virtual server is
not using SSL decryption then this function will return the empty string.

Sample Usage
$end = ssl.serverCertEndDate();

if($time < sys.time()) {

log.warn("Using out of date certificate!");

}

Restrictions

Can only be used with TCP-based protocols.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 279 of 294

Function Reference

http://www.ivanti.com/company/legal

ssl.serverCertHash()

Returns the hex-encoded MD5 hash of the certificate being used by your traffic manager for this
connection. If this virtual server is not using SSL decryption or if the MD5 algorithm is unavailable (e.g.
when operating in FIPS Mode) then this function will return the empty string.

Sample Usage
$md5 = ssl.serverCertHash();

log.info("Server Cert Hash: " . $md5);

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertIssuer()

Returns a string with the issuer data of the certificate being used by your traffic manager for this
connection (each field is separated by commas). If this virtual server is not using SSL decryption then
this function will return the empty string.

Sample Usage
$issuer = ssl.serverCertIssuer();

if(ssl.serverCertSubject() == $issuer) {

log.info("Certificate is self-signed");

}

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertName()

Returns the name of the certificate being used by the virtual server for this connection. This is the name
used to identify the certificate in the UI. If this virtual server is not using SSL decryption then this
function will return the empty string.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 280 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
$name = ssl.serverCertName();

log.info("Using server cert: " . $name);

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertPublicKey()

Returns information about the public key of the certificate being used by your traffic manager for this
connection. If this virtual server is not using SSL decryption then this function will return the empty
string.

Sample Usage
Returns public key information,

e.g. "RSA (1024 bit)"

$public_key = ssl.serverCertPublicKey();

log.info("Certificate public key: " . $public_key);

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertSHA1()

Returns the hex-encoded SHA1 fingerprint of the certificate being used by your traffic manager for this
connection. If this virtual server is not using SSL decryption then this function will return the empty
string.

Sample Usage
$sha1 = ssl.serverCertSHA1();

log.info("Server Cert SHA1 Fingerprint: " . $sha1);

Restrictions

Can only be used with TCP-based protocols.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 281 of 294

Function Reference

http://www.ivanti.com/company/legal

ssl.serverCertSerial()

Returns a string with the serial number (in hex) of the certificate being used by your traffic manager for
this connection. If this virtual server is not using SSL decryption then this function will return the empty
string.

Sample Usage
$serial = ssl.serverCertSerial();

log.info("Server certificate serial: " . $serial);

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertStartDate()

Returns the date the certificate being used by your traffic manager for this connection became valid.
The date is an integer, representing the number of seconds since the epoch. If this virtual server is not
using SSL decryption then this function will return the empty string.

Sample Usage
$start = ssl.serverCertStartDate();

log.info("Server Certificate is valid from ".

sys.timeToString($start));

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertSubject()

Returns the subject data of the certificate being used by your traffic manager for this connection (each
field is separated by commas). If this virtual server is not using SSL decryption then this function will
return the empty string.

Sample Usage
Returns the subject information of the cert,

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 282 of 294

Function Reference

http://www.ivanti.com/company/legal

e.g. C=GB, L=Cambridge, O=Zeus, CN=foo.com

$subject = ssl.serverCertSubject();

log.info("Server cert subject: " . $subject);

Restrictions

Can only be used with TCP-based protocols.

ssl.serverCertVersion()

Returns the version of the certificate being used by your traffic manager for this connection (either "1",
"2" or "3"). If this virtual server is not using SSL decryption then this function will return the empty string.

Sample Usage
$version = ssl.serverCertVersion();

log.info("Server Cert Version: " . $version);

Restrictions

Can only be used with TCP-based protocols.

ssl.serverSiteName()

Returns the hostname or IP address that was used to select the current server certificate. If the default
certificate was used, or the current connection is not encrypted, the empty string is returned.

Sample Usage
$site_name = ssl.serverSiteName();

if(ssl.isSSL() && $site_name == "") {

The default certificate was used

}

Restrictions

Can only be used with TCP-based protocols.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 283 of 294

Function Reference

http://www.ivanti.com/company/legal

ssl.setClientCloseAlert(alertflag)

Sets whether your traffic manager will send the SSL client an SSL close alert prior to terminating the TCP
connection. An value of 0 will disable close alerts, a non-zero value will enable close alerts. This setting
also applies to related connections, such as data transfer channels related to FTP command channels. If
the connection with the client is not an SSL connection then calling this function will do nothing.

Sample Usage
if(ssl.isSSL()) {

Ensure close alerts are enabled.

ssl.setClientCloseAlert(1);

}

Restrictions

Can only be used with TCP-based protocols.

ssl.setServerCloseAlert(alertflag)

Sets whether your traffic manager will send the SSL server an SSL close alert prior to terminating the
TCP connection. A value of 0 will disable close alerts, a non-zero value will enable close alerts. This
setting also applies to related connections, such as data transfer channels related to FTP command
channels. Note that this function will only work on SSL connections and the server side connection must
be established (i.e. it should typically only be used in response rules.)

Sample Usage
if(ssl.isSSL()) {

Ensure close alerts are enabled.

ssl.setServerCloseAlert(1);

}

Restrictions

Can only be used with TCP-based protocols.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 284 of 294

Function Reference

http://www.ivanti.com/company/legal

ssl.setTLSServerName(servername)

Instructs your traffic manager to use the specified hostname when using the TLS 1.0 server_name
extension. This method only works if the back end pool has SSL encryption and the server_name option
enabled. Using the empty string as this function's parameter will make your traffic manager use the
hostname of the node that it is connecting to.

Sample Usage
Use the hostname foo in the TLS 1.0 server_name

extension

ssl.setTLSServerName("foo");

Restrictions

Can only be used with TCP-based protocols.

ssl.sslKeyLogLine()

If the ssl!log_keys global config key is enabled the function will return a key log line (or lines for TLS 1.3)
suitable for use in Wireshark's SSL key log. If ssl!log_keys is disabled, the empty string will always be
returned.

Sample Usage
Get the SSL key log

$keylogline = ssl.sslKeyLogLine();

log.info("SSL key log: " . $keylogline);

Restrictions

Can only be used with TCP-based protocols.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 285 of 294

Function Reference

http://www.ivanti.com/company/legal

ssl.sslSessionID()

Returns the session ID of the current SSL connection as a hex-encoded string. An empty string is
returned if the connection is not SSL-encrypted, or if no session ID is available. For example, no session
id is available if SSL resumption is disabled (pre-TLS 1.3) or if the protocol version is TLS 1.3 or later. This
function can also be used with SSL pass-through traffic. When used in a request rule the traffic manager
will look for a session ID provided in the ClientHello. Clients provide session IDs only if they are trying to
resume a previously used SSL session. If the client did not provide a session ID, this function will return
an empty string.

When used in a response rule with SSL pass-through traffic, this function will return the session ID
provided in the ServerHello. This might be the same as the session ID sent by the client If the client
attempted to resume the session, but this is not guaranteed.

Sample Usage
Get the SSL session ID

$sessionid = ssl.sslSessionID();

log.info("SessionID: " . $sessionid);

Restrictions

Can only be used with TCP-based protocols.

stats.getQueueTime()

Returns the amount of time, in milliseconds, that the client spent queueing to connect to the server due
to backend connection limits.

Sample Usage
Keep a record of how many connections

queue for longer than 1 second.

if(stats.getQueueTime() > 1000) {

Increment user counter 1

counter.increment(1);

}

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 286 of 294

Function Reference

http://www.ivanti.com/company/legal

stats.getServerResponseTime()

Returns the amount of time, in milliseconds, between sending the first byte of the request to the server,
and receiving a response.

In the case of HTTP, SIP and RTSP this is the time until the traffic manager has received a full set of
headers from the server. For all other protocols, it is the time until the traffic manager has received the
first byte of the response from the server.

If the server has not sent a response, this function will return 0.

Sample Usage
Emit an event when the server takes a

particularly long time to respond to a

request.

if(stats.getServerResponseTime() > 30000) {

event.emit("slowresponse", http.getRawURL());

}

stats.getTransactionDuration()

Returns the amount of time, in milliseconds, for which the current transaction has been active, from the
time the first byte was received from the client to the current time.

If used in a transaction completion rule, this will be the total duration of the transaction.

Sample Usage
Record this connection on the recent connections

page if it took more than 5 seconds to complete

if(stats.getTransactionDuration() > 5000) {

recentconns.include();

}

sys.getRestApiPort()

Returns the TCP port number used by the REST API, such as 9070.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 287 of 294

Function Reference

http://www.ivanti.com/company/legal

Sample Usage
get the REST API port

$restport = sys.getRestApiPort();

use that to get the root node from the REST API

$body = http.request.get(

"http://localhost:".$restport."/");

in this case an 'error: authentication required'

type response

will be returned

sys.isFIPS()

Returns 1 if the traffic manager is operating in FIPS Mode, otherwise it returns 0.

Sample Usage
if(sys.isFIPS()) {

FIPS Mode is in operation

}

tcp.close(sock)

Close a previously opened TCP socket. A non-zero return value indicates a successful close, if 0 is
returned then an error occurred and an error string will be in '$1'.

If a rule fails to close a TCP socket, it will be closed automatically when the Virtual Server connection
finishes.

Sample Usage
$sock = tcp.connect("10.100.1.5", 7);

tcp.close($sock);

Restrictions

Cannot be used in completion rules.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 288 of 294

Function Reference

http://www.ivanti.com/company/legal

tcp.connect(ip, port, [timeout])

Create a new TCP socket to the supplied IP address and port. This function will return a socket handle
that can be used by other tcp.* functions. The created TCP socket is unique to this connection, and can't
be used by other connections.

An optional timeout can be specified in milliseconds. If a connection has not been established within
this time the function will return 0 and $1 will be set to "timeout".

Note that if the Virtual Server connection times out before this socket has been established then the
connection will be terminated.

Returns 0 on error (with an error message in $1).

Sample Usage
$sock = tcp.connect("::1", 3306);

if(! $sock) {

log.error("Error: " . $1);

}

Restrictions

Cannot be used in completion rules.

tcp.read(socket, maximum, [timeout])

Read data from a previously opened TCP connection. The function waits until data is available on the
TCP socket, and will then return the available data (up to the specified 'maximum'). If an error occurs an
empty string will be returned and $1 will contain an error message, or 0 if the connection has been
closed.

An optional timeout can be specified in milliseconds. If a no data has been read within this time the
function will return an empty string and $1 will be set to "timeout".

Note that if the Virtual Server connection times out before any data has been read then the connection
will terminated.

Sample Usage
Read from a TCP socket, ensuring we get 1024 bytes

$amount = 1024;

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 289 of 294

Function Reference

http://www.ivanti.com/company/legal

$buf = '';

while(string.len($buf) != $amount) {

$data = tcp.read($sock, $amount -

string.len($buf));

if($data == "") {

$buf = '';

break;

}

$buf .= $data;

}

Restrictions

Cannot be used in completion rules.

tcp.write(socket, data, [timeout])

Writes all of the supplied data to a TCP socket. The function will return the number of bytes written. If
an error occurs then -1 will be returned, and $1 will contain an error message.

An optional timeout can be specified in milliseconds. After this time the number of bytes written will be
returned, and $1 will contain the string 'timeout'.

Note that if the Virtual Server connection times out before the data has been written then the
connection will be terminated.

Sample Usage
$sock = tcp.connect("10.100.1.5", 7);

tcp.write($sock, "Ping\n");

Restrictions

Cannot be used in completion rules.

udp.sendTo(host, port, data)

Send some data via UDP to ip:port.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 290 of 294

Function Reference

http://www.ivanti.com/company/legal

If successful, returns the number of bytes written. A return value of -1 indicates a failure; in this case an
error string will be stored in '$1'.

Sample Usage
$res = udp.sendTo("10.100.1.5", 82, "ping");

if($res == -1) {

log.warn("Error sending data: " . $1);

}

xml.validate(document, DTD) - deprecated

This function has been deprecated. Use instead "xml.validate.dtd(document, DTD)" below.

Validates an XML document against a DTD. It returns 1 if the document validated correctly, and 0 if it
did not. It returns -1 if there was an error parsing the XML document or the DTD.

The XML processing functionality must be enabled by the software license.

xml.validate.dtd(document, DTD)

Validates an XML document against a DTD. It returns 1 if the document validated correctly, and 0 if it
did not. It returns -1 if there was an error parsing the XML document or the DTD.

The XML processing functionality must be enabled by the software license.

Sample Usage
Validate the HTTP body against the DTD stored in

the resource 'mydtd'

$theDoc = http.getBody(0);

$theDTD = resource.get("mydtd");

if(xml.validate.dtd($theDoc, $theDTD) != 1) {

validation failed ...

}

xml.validate.xsd(document, schema)

Validates an XML document against an XML schema. It returns 1 if the document validated correctly,
and 0 if it did not. It returns -1 if there was an error parsing the XML document or the schema.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 291 of 294

Function Reference

http://www.ivanti.com/company/legal

If the schema against which the document is being validated needs to import another schema file, it will
search for it inside Catalog > Extra Files > Miscellaneous Files.

The XML processing functionality must be enabled by the software license.

Sample Usage
Validate the HTTP body against the schema stored in

the resource 'myschema'

$theDoc = http.getBody(0);

$theSchema = resource.get("myschema");

if(xml.validate.xsd($theDoc, $theSchema) != 1) {

validation failed ...

}

xml.xpath.matchNodeCount(doc, nspacemap, query)

Applies an XPath query to the supplied XML document. It returns the number of entries in the result
node set.

The function will return -1 if there was an error parsing the XML document, XML namespace or XPath
query.

Namespaces can be used in the XPath query by defining them in the "nspacemap" parameter. This
parameter is specified as a space-separated list of identifiers mapped to namespaces. For example,
specifying 'xmlns:myns=http://www.example.com/mynamespace' allows you to use the identifier 'myns'
in the XPath query to find elements in the 'http://www.example.com/mynamespace' namespace within
the XML document.

The XML processing functionality must be enabled by the software license.

Sample Usage
A sample XML document

$theDoc =

'<?xml version="1.0" encoding="UTF-8"?>

<mybook xmlns="http://www.example.com/book"

xmlns:recent="http://www.example.com/newitems">

<item>Item 1</item>

<recent:item>Item 2</recent:item>

<item>Item 3</item>

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 292 of 294

Function Reference

http://www.ivanti.com/company/legal

<recent:item>Item 4</recent:item>

</mybook>

';

How many items are in the 'newitems' namespace

under the 'mybook' element of the 'book' namespace?

Note: namespace identifiers in the XPath query

do not have to be the same as those used in the XML

document itself.

$items = xml.xpath.matchNodeCount(

$theDoc,

"xmlns:book=http://www.example.com/book ".

"xmlns:new=http://www.example.com/newitems",

"//book:mybook/new:item"

);

$items = 2

xml.xpath.matchNodeSet(doc, nspacemap, query)

Applies an XPath query to the supplied XML document. It returns a string representation of the result
node set.

The function will return an empty string if there was an error parsing the XML document, XML
namespace or XPath query.

Namespaces can be used in the XPath query by defining them in the "nspacemap" parameter. This
parameter is specified as a space-separated list of identifiers mapped to namespaces. For example,
specifying 'xmlns:myns=http://www.example.com/mynamespace' allows you to use the identifier 'myns'
in the XPath query to find elements in the 'http://www.example.com/mynamespace' namespace within
the XML document.

The XML processing functionality must be enabled by the software license.

Sample Usage
A sample XML document

$theDoc =

'<?xml version="1.0" encoding="UTF-8"?>

<mybook xmlns="http://www.example.com/book"

xmlns:recent="http://www.example.com/newitems">

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 293 of 294

Function Reference

http://www.ivanti.com/company/legal

<item>Item 1</item>

<recent:item>Item 2</recent:item>

</mybook>

';

Get the value of the 'item' node in the 'newitems'

namespace under the 'mybook' element of the 'book'

namespace.

Note: namespace identifiers in the XPath query

do not have to be the same as those used in the XML

document itself.

$set = xml.xpath.matchNodeSet(

$theDoc,

"xmlns:book=http://www.example.com/book ".

"xmlns:new=http://www.example.com/newitems",

"//book:mybook/new:item/text()"

);

$set = 'Item 2'

xml.xslt.transform(document, stylesheet)

Performs an XSLT transformation on a XML document. It returns the transformed document, or -1 on
failure.

The XML processing functionality must be enabled by the software license.

Sample Usage
Perform XSLT transformation on supplied POST XML

data, and return the HTML result to the client.

$response = xml.xslt.transform(http.getbody(0),

resource.get("people.xsl"));

http.sendResponse("200 OK", "text/html",

$response, "");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 294 of 294

Function Reference

http://www.ivanti.com/company/legal

	Preface
	Document conventions
	Requesting Technical Support

	Introduction
	The TrafficScript Language
	Application of Rules
	Using a TrafficScript Rule

	TrafficScript Syntax
	Statements
	Constants
	Variables
	Expressions
	Conditionals
	Loops
	Other Flow Control
	Complex Data Types
	Functions
	Escaping Regular Expressions
	Creating New Subroutines in TrafficScript
	Request and Response Rules
	The State Machine in Detail

	Sample TrafficScript Rules
	Routing by Content Type
	Restricting Access Based on the Time of Day
	Customer Prioritization
	Routing Based on XML Traffic
	Authenticating User Access
	Synchronizing Requests and Responses
	Streaming HTTP Responses
	Managing FTP Connections

	Troubleshooting
	Checking Syntax
	Debugging Rules
	Request and Response Rules
	A Special Note About pool.use and pool.select

	Function Reference
	TrafficScript Core Functions
	Traffic Manager Functions

